
UNIVERSITÀ CATTOLICA DEL SACRO CUORE 

Sede di Piacenza 

 

Dottorato di ricerca per il Sistema Agro-alimentare 

Ph.D. in Agro-Food System 

 

Cycle XXXVI 

S.S.D. AGR/07. Genetica Agraria 

 

 

 
 
 
 

  
 
 
 
 
 

Development and validation of genomic 

selection models for the improvement of pea 

grain yield and protein content in Italian 

environments 

 
 

 
Coordinator: 

Ch.mo Prof. Paolo Ajmone Marsan 

 

                                                                                                                                Candidate: Margherita Crosta 

Matriculation n: 5014531 

                                                        Academic Year 2022/2023 



1 

 

UNIVERSITÀ CATTOLICA DEL SACRO CUORE 

Sede di Piacenza 

Dottorato di ricerca per il Sistema Agro-alimentare 

Ph.D. in Agro-Food System 

Cycle XXXVI 

S.S.D. AGR/07. Genetica Agraria 

 

 

 

 

 

 

Development and validation of genomic 

selection models for the improvement of pea 

grain yield and protein content in Italian 

environments 

 

Coordinator: 

Ch.mo Prof. Paolo Ajmone Marsan 

 

 

Tutor:  

Dr. Paolo Annicchiarico 

Prof. Adriano Marocco 

                                                                                                                                Candidate: Margherita Crosta 

Matriculation n: 5014531 

 

 

Academic Year 2022/2023 



2 

 

INDEX 

1. Introduction ................................................................................................................................................. 5 

1.1. Abstract ................................................................................................................................................. 5 

1.2. Legumes as a resource for the environmental sustainability and food security of European 

agriculture .................................................................................................................................................... 6 

1.2.1. Uses and market trends of protein-rich plants in the European Union ....................................... 6 

1.2.2. Legume environmental and agronomic benefits ......................................................................... 10 

1.2.3. European Union deficit of feed proteins and related policies ..................................................... 13 

1.3. Pea (Pisum sativum L.) ....................................................................................................................... 15 

1.3.1. Taxonomic, botanic, and agronomic characteristics .................................................................. 15 

1.3.2. Pea potential for European agriculture and major breeding goals ............................................ 23 

1.3.3. Genetic and genomic resources .................................................................................................... 26 

1.3.4. Grain yield and protein content: physiological and genetic control, and relationship .............. 28 

1.4. Genomic selection ............................................................................................................................... 30 

1.4.1. The technique ............................................................................................................................... 30 

1.4.2. Statistical models .......................................................................................................................... 33 

1.4.3. Comparison with marker-assisted selection................................................................................. 34 

1.4.4. State of the art for grain yield and protein content improvement in pea .................................... 35 

1.5. Research objectives ............................................................................................................................ 35 

2. Pea grain protein content across Italian environments: genetic relationship with grain yield, and 

opportunities for genomic selection for protein yield ................................................................................. 37 

2.1. Objectives ............................................................................................................................................ 37 

2.2. Materials and methods ....................................................................................................................... 37 

2.2.1. Plant material ............................................................................................................................... 37 

2.2.2. Phenotyping .................................................................................................................................. 37 

2.2.3. Statistical analysis of phenotypic data ......................................................................................... 39 

2.2.4. Genotyping and genomic data processing ................................................................................... 40 

2.2.5. Genomic selection ......................................................................................................................... 40 

2.2.6. Comparison of genomic vs. phenotypic selection ........................................................................ 41 

2.2.7. Genome-wide association study and linkage disequilibrium decay ............................................ 42 

2.3. Results .................................................................................................................................................. 43 

2.3.1. Phenotypic variation, genotype × environment interaction, and trait interrelationships .......... 43 

2.3.2. Genomic selection ......................................................................................................................... 45 

2.3.3. Comparison of genomic vs. phenotypic selection ........................................................................ 46 

2.3.4. Genome-wide association study and linkage disequilibrium decay ............................................ 47 



3 

 

2.4. Discussion ............................................................................................................................................ 48 

3. Genomic prediction and allele mining for the improvement of grain yield and protein content in a 

pea germplasm collection .............................................................................................................................. 52 

3.1. Objectives ............................................................................................................................................ 52 

3.2. Materials and methods ....................................................................................................................... 52 

3.2.1. Plant material and phenotyping ................................................................................................... 52 

3.2.2. Statistical analysis of phenotypic data and trait interrelationships ............................................ 53 

3.2.3. Genotyping and genomic data processing ................................................................................... 53 

3.2.4. Genomic selection ......................................................................................................................... 54 

3.2.5. Genome-wide association study and linkage disequilibrium decay ............................................ 55 

3.3. Results .................................................................................................................................................. 56 

3.3.1. Phenotypic variation and trait interrelationships ........................................................................ 56 

3.3.2. Genomic selection ......................................................................................................................... 56 

3.3.3. Genome-wide association study and linkage disequilibrium decay ............................................ 58 

3.4. Discussion ............................................................................................................................................ 59 

4. Genomic selection for pea grain yield, protein content, and protein yield: 

predictive ability in indipendent Italian environments for target and non-target genetic bases ........... 62 

4.1. Objectives ............................................................................................................................................ 62 

4.2. Materials and methods ....................................................................................................................... 62 

4.2.1. Plant material and phenotyping ................................................................................................... 62 

4.2.2. Heritability estimate ...................................................................................................................... 63 

4.2.3. Genotyping and genomic data processing ................................................................................... 63 

4.2.4. Genomic selection ......................................................................................................................... 64 

4.3. Results .................................................................................................................................................. 64 

4.3.1. Genomic selection ......................................................................................................................... 64 

4.4. Discussion ............................................................................................................................................ 66 

5. Comparison of genetic gains obtained by phenotypic and genomic selection on target and non-target 

genetic bases for pea grain and protein yield in Italian environments ..................................................... 69 

5.1. Objectives ............................................................................................................................................ 69 

5.2. Materials and methods ....................................................................................................................... 69 

5.2.1. Plant material, phenotyping, and selection process .................................................................... 69 

5.2.2. Statistical analyses of phenotypic data ......................................................................................... 70 

5.3. Results .................................................................................................................................................. 71 

5.3.1. Statistical analyses of phenotypic data ......................................................................................... 71 

5.4. Discussion ............................................................................................................................................ 75 

6. Conclusions ................................................................................................................................................ 78 



4 

 

7. References .................................................................................................................................................. 81 

8. Appendix .................................................................................................................................................... 94 

 

  



5 

 

1. Introduction 

1.1. Abstract 

Wider pea (Pisum sativum L.) cultivation has great interest for European agriculture, owing 

to its favourable environmental impact and provision of high-protein feedstuff, for which 

Europe is largely dependent on importations. The main goal of this work was the 

investigation of genomic selection (GS) potential for the improvement of pea grain yield, 

protein content and their combination (protein yield) in environments of northern and central 

Italy, both per se and relative to phenotypic selection (PS). All genomic data were obtained 

by genotyping-by-sequencing (GBS) based on ApekI restriction enzyme. A Genome-Wide 

Association Study (GWAS) was performed for grain yield and protein content on three 

connected Recombinant Inbred Line (RIL) populations and a worldwide germplasm 

collection, to have a deeper insight into the genetic architecture of these traits. Moreover, the 

genetic correlation between these traits, and the phenotypic correlation between protein yield 

and each of its components were assessed in different environments for these material sets. 

The extent of variation attributable to the genetic and genotype × environment interaction (G 

× E) components was investigated in three connected RIL populations characterized in three 

environments. The inter-environment predictive ability of GS models was assessed for the 

target traits in breeding material, as represented by RIL populations issued by crosses 

between élite European cultivars, both in an intra- and inter-population prediction scenario 

(meaning that GS models were applied on the same or a different genetic base relative to that 

employed for training, respectively). Moreover, GS models for grain yield and protein 

content were developed on a worldwide germplasm collection and tested for the ability to 

predict the breeding values of other accessions from the same material or from three 

connected RIL populations evaluated in three independent environments. A comparison 

between GS and PS was performed by computing the genetic gains achieved in one selection 

year by similar budgets relative to the parental lines of each RIL population, either belonging 

or not to the GS training set. GWAS confirmed the expected polygenic control of grain yield 

and protein content, by highlighting many significant Single Nucleotide Polymorphisms 

(SNPs) in different genomic regions. Phenotypic correlation results highlighted a largely 

predominant role of grain yield on protein yield determination relative to protein content, 

while the genetic correlation between grain yield and protein content resulted mostly non-

significant. Protein content displayed a superior GS predictive ability in all the scenarios, 

benefiting from a higher within-trial broad-sense heritability and a lower influence of G × E, 

compared with grain and protein yield. Mean predictive ability values were moderately high 
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for all the target traits in the intra-population scenario independently from the material set, 

while a remarkable drop in predictions was observed, especially for grain and protein yield, 

in the inter-population scenario both for models trained on narrow (three connected RIL 

populations) or wide (germplasm collection) genetic bases. However, a strong variation in 

GS predictive ability was detected for all the target traits, especially in the inter-population 

scenario, depending on the specific material employed for validation, with even grain and 

protein yield predictions revealing satisfactory for some RIL populations. In the GS inter-

population scenarios, the validation sets showing a higher number of polymorphic markers, 

either computed on all SNPs or on a moderately large subset of top-effect SNPs, tended to 

display superior predictive ability values for grain yield, while this was not always true for 

protein content. GS tended towards much higher genetic gains than PS for populations from 

the GS training set, whereas an opposite scenario characterized the non-training RIL 

populations, albeit with large between-population variation emerging for both material sets. 

Overall, our results encourage the adoption of GS for the simultaneous improvement of grain 

yield and protein content in an intra-population scenario, while showing an interest of inter-

population predictions only for protein content or for grain yield on specific material sets. 

 

1.2. Legumes as a resource for the environmental sustainability and food security of 

European agriculture 

1.2.1. Uses and market trends of protein-rich plants in the European Union 

Protein-rich plants, including legumes (consisting of pulses, namely beans, peas, lentils, 

lupins etc.; fodder legumes, namely mainly alfalfa and clover; and soybean, which is 

considered as an oilseed) and other oilseeds (rapeseed, sunflower), feature a crude protein 

content higher than 15% and currently represent about 25% of the total crude plant protein 

supply in the European Union (EU). Animal feeding is by far the main destination of protein-

rich plants and derivatives in the EU, absorbing more than 94% of total consumption, while 

the rest is employed by the food sector (Figure 1). 
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Figure 1. Summary of the main market segments using legumes in the European Union (Source: Clément et 

al., 2018). 

 

Imported oilseeds and derived meals represent the main source of protein-rich plant material 

in the EU, with a predominant role of soybean (87% of protein-rich plant importations), the 

rest being essentially sunflower and rapeseed, while legume fodder and pulses are mainly 

produced internally (Figure 2) and play a minor role, contributing to just 15% and 3% of the 

total feed protein supplied by protein-rich plants, respectively (Clément et al., 2018). 

Figure 2. Protein balance for protein-rich plants in the European Union during 2016 (unit: crude protein, Source: 

Clément et al., 2018). 

 

EU feed market for protein-rich plants can be divided into three main segments: (1) 

conventional, (2) free from genetic modification (GM-free), and (3) organic, whose main 

drivers are resumed in Table 1. 
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Table 1. Main drivers of protein-rich plants (PRP) feed market segments in the European Union, including 

conventional, GM-free, and organic sectors. “GM-free” means genetic modification free, “non-GM” non-

genetically modified, “GMO” genetically-modified organism, “PDO” Protected Designation of Origin, “PGI” 

Protected Geographical Indication, and “B2B” business to business, referring to transactions between two 

companies (Source: Clément et al., 2018). 

 

Increasing the cultivation of pulse species adapted to European conditions could be an 

effective way to reduce EU dependency on protein-rich crop importations, but several 

barriers impeding the diffusion of these crops still exist (European Commission, 2018).  

Firstly, exploiting the complementary nutritional profile of oilseed meals, featuring a high 

protein content, and cereals, featuring a high starch content, is more convenient for the 

conventional compound feed sector than using crops characterized by intermediate nutritional 

profiles, such as pulses. In addition, the possibility to employ oilseeds for biodiesel 

production while obtaining a marketable by-product, namely protein meal, represents a 

further advantage of these species compared to pulses (Hay, 2019), which are also penalized 

by the limited market size and agronomic constraints (e.g., pests and low yields). On the other 

hand, the development of premium markets, such as GM-free and organic ones, and local 

value chains could contribute to enhance pulse competitiveness, which currently suffers from 

a high price variability due to the inferior quality consistency, supply steadiness, and hedging 

opportunities of these species compared to oilseeds. Finally, the growing diffusion of 

technological treatments such as toasting, dehulling, and protein extraction could increase 

protein concentration and digestibility in pulse derivatives compared with unprocessed 

materials, thereby improving their value as animal feed. 

Although legume food market represents a niche compared to the feed one, it benefits from 

higher prices all along the value chain. It consists of three main segments, namely (1) legumes 

commercialized as whole grains (dry, fresh, canned, or frozen), which can be sold as such or 

incorporated in ready-to-eat dishes; (2) processed legume-based products (e.g., meat and 
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dairy alternatives and pulse-based snacks); and (3) functional protein ingredients used by 

food companies for technical or nutritional purposes. Legumes commercialized as whole 

grains represent the main segment, accounting for about three quarters of the total market, 

but the remaining two segments have experienced a significant growth in the last decade and 

benefit from higher prices compared to legumes sold as such. The legume sourcing strategy 

depends on the targeted market segment and consumer type, with EU supply relying on 

campaign contracts with collectors. Whole grains are either sourced locally in the case of 

more quality-oriented production (e.g., products labelled as Protected Designation of Origin, 

namely PDO, Protected Geographical Indication, that is PGI, or reporting the country of 

origin on packaging) or imported in the case of more price-competitive production, while 

processed legume-based products normally rely on local supply. Different trends characterize 

soybean-derived compared with pea-derived functional ingredients, with the former being 

mainly imported, while the latter mostly relying on the internal production. Legume demand 

for food is affected by different factors depending on the market segment, especially that of 

whole grain pulses and processed products is mainly driven by the final consumer, while that 

of functional protein ingredients by the agri-food industry (Table 2). 

Table 2. Main drivers of legume food market segments in the European Union (EU), including whole grains, 

processed plant protein products, and functional protein ingredients. “GM-free” means genetic modification 

free, and “R & D” research and development (Source: Clément et al., 2018). 

 

 

Various factors will likely impact legume food market in the future. First, in the coming years, 

flexitarian, vegetarian, and vegan diets are expected to increase, and so the demand for 

legumes and processed plant-based products. Secondly, the growing diffusion of gluten-free 

foods will probably enhance the demand for legumes, as they naturally contain no gluten and 

can be combined with rice or corn to create gluten-free products. Additionally, health and 

environmental considerations are becoming increasingly important for consumer choices, 

driving the demand for plant proteins as an alternative to animal proteins. Moreover, the 

growing demand for food featuring local origin and short cooking time, may encourage 
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legume cultivation and innovation in processing techniques, while diminishing the interest in 

dry legumes in the EU (Clément et al., 2018). Finally, the establishment of incentives by the 

EU aimed at rewarding the environmental benefits of legume cultivation, such as nitrogen 

fixation and the increase of cultivated biodiversity, would contribute to enhance the 

profitability of this species. 

 

1.2.2. Legume environmental and agronomic benefits 

Climate change adaptation and mitigation appear as the greatest challenges humanity is 

currently facing, implying the necessity to rapidly implement technical, economical, and 

political changes in the existing systems (Brondizio et al., 2019). Climate change is the result 

of human activities based on fossil fuel consumption generating an increase in the 

atmospheric content of a range of gases, defined as greenhouse gases (GHG). These gases, 

including carbon dioxide (CO2), accounting alone for 76% of total GHG emissions, methane 

(CH4), nitrous oxide (N2O), and chlorofluorocarbons (Pachauri and Meyer, 2014), trap heat 

near the Earth's surface causing temperatures to rise and determining the so-called greenhouse 

effect (NASA, n.d.). Agriculture, forestry, and other land uses accounted for about 15% of 

global anthropogenic GHG emissions in 2019 (Ghosh, 2022; Figure 3), with the following 

contributions: (1) 31.5% from livestock enteric fermentation emitting methane, and 

decomposition of animal manures under low-oxygen conditions producing both nitrous oxide 

and methane; (2) 22.3% from the application of synthetic nitrogen fertilizers causing nitrous 

oxide release from soil; (3) 19% from the burning of agricultural residues releasing carbon 

dioxide, nitrous oxide, and methane; (4) 12% from net carbon dioxide emissions due to 

changes in forestry cover; (5) 7.6% from net change in carbon stocks due to cropland 

management; (6) 7.1% from methane emissions due to rice cultivation; and (7) 0.5% from 

carbon dioxide release due to grassland degradation (Ritchie, 2020; percentages of GHG 

emissions from the different sources are based on data of 2016). Moreover, in 2016 an 

additional 1.7% of human GHG emissions was generated by energy consumption in the 

agricultural and fishing sectors according to Ritchie (2020), while the total contribution of 

the food sector was estimated around 26% (Ritchie, 2019; Figure 4). Therefore, reducing 

GHG emissions from the agricultural sector appears crucial to keep the expected global 

temperature rise for 2030 below 2°C, as stated in the objectives of the Paris Agreement 

(United Nations, 2015). In this context, legume cultivation represents an outstanding resource 

for enhancing the sustainability of the agricultural production (Lüscher et al., 2014; Oliveira 
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et al., 2021) due to the provision of a wide range of agro-ecosystem services, including: (1) 

biological nitrogen fixation through symbiosis with soil bacteria of genus Rhizobium 

(Rochester et al., 2001; Jensen and Hauggaard-Nielsen,  2003; Crews and Peoples, 2004) and 

Bradyrhizobium (Crews and Peoples, 2004; Jaiswal and Dakora, 2019), (2) increase in 

cultivated plant and animal (e.g., pollinators) biodiversity with a positive impact on 

agricultural system resilience, implying lowered weed, pest, and disease risks (Jensen and 

Hauggaard-Nielsen, 2003; Köpke and Nemecek, 2010; European Commission, 2018); (3) 

quantitative and qualitative improvement of the performance of subsequent crops in 

agronomic rotations (European Commission, 2018); (4) extensive soil coverage when 

combined with cereals in annual or perennial mixtures leading to a reduction of nutrient run-

off into groundwater and rivers; (5) soil structure amelioration due to the capacity of some 

legume species to decrease soil strength (Rochester et al., 2001; McCallum et al., 2004). For 

these reasons, legume cultivation can contribute to the achievement of crucial sustainability 

goals, including: (1) diminishing fossil energy consumption and GHG emissions generated 

by the synthesis, transport, and application of nitrogen fertilizers and, to a lower extent, of 

agrochemicals (Häusling, 2011; Jensen et al., 2012); (2) increasing soil carbon sequestration 

thanks to nitrogen fixation favoring humification processes (Christopher and Lal, 2007); (3) 

providing a healthy and energy-efficient alternative protein source to animal products for 

human diets (Iannetta et al., 2021), potentially allowing for noticeable land sparing 

(Searchinger et al., 2019) and deforestation reduction (Ghosh, 2022; Figure 3); (4) providing 

an energy-efficient biomass source for different purposes, including bio-refineries and 

chemical industry (Jensen et al., 2012). Furthermore, increasing legume adoption in 

agronomic rotations appears crucial for tackling the problem of nitrogen deficiency in organic 

agriculture, representing the main obstacle to its potential widespread diffusion (Barbieri et 

al., 2021). Finally, enhancing legume production in the EU would contribute to reduce 

soybean importations from South America mitigating the problem of agriculture-linked 

deforestation (Ghosh, 2022; Figure 3), and of GHG emissions generated by food transport 

(Poore and Nemecek, 2018; Figure 4). 
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Figure 3. Global greenhouse gas emissions by economic sector for year 2019 (Source: Ghosh, 2022). 

 

 

 

Figure 4. Global greenhouse gas emissions from food production (Source: Poore and Nemecek, 2018). 
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1.2.3. European Union deficit of feed proteins and related policies 

In the last decades, EU livestock industry has expanded to keep up with the increasing 

demand for animal proteins (FAO, n.d.a), which came at the expense of that for plant‐based 

protein, generating a growing request of high-protein feed (Sepngang et al., 2020). In the 

same period, EU arable land destined to legume cultivation has declined from 4.7% of 1961 

to 1.8% of 2021 (Balázs et al., 2021), under the impulse of international trade agreements. In 

particular, the General Agreement on Tariffs and Trade (WTO, 1947) and the Blair House 

Agreement (European Commission, 1993), allowed for the protection of EU cereal 

production and, at the same time, for duty-free importations of oilseed and protein crops. 

Obviously, these measures have favored legume importations, implying a substantial 

reduction of EU investments in legume research and a gradual loss of practical knowledge 

about the cultivation and processing of these crops by farmers and local businesses, regarding 

e.g., on-farm selection, storage, processing techniques, and on-farm use as animal feed 

(Häusling, 2011). Currently, legume cultivars are characterized by a great variability of both 

yield (Reckling et al., 2015) and economic return (LMC International, 2009), and a 

considerably lower yield compared with cereal varieties (De Visser et al., 2014; Reckling et 

al., 2015), stemming from the poor efforts made in legume breeding in the recent decades 

(Häusling, 2011). In countertendency with other legume species, soybean gross margin has 

experienced a constant growth in recent years in the EU, while pea, field bean, and alfalfa 

have featured the lowest gross margins, except for specific value chains generating high 

prices (e.g., legumes destined to animal feeding for PDO or PGI cheese production). All these 

factors have contributed to generate the current EU deficit of about 70% for feed protein 

crops (Figure 5), 87% of which is covered by imported soybean and soybean meal (Clément 

et al., 2018) mainly from North and South America (Sepngang et al., 2020).  

Figure 5. European Union plant protein consumption and sources in million tons of crude protein during 2016-

17. "Complex" includes meals, seeds, and beans. (Source: European Commission, 2018). 
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In South America, massive soybean cultivation has brought about tropical deforestation, 

contributing to a growth of GHG emissions, a dramatic loss of biodiversity (Wearn et al., 

2012), and degradation of soil and water (Maia et al., 2010; Neill et al., 2013). Hence, 

fostering EU legume production can have a positive impact on the worldwide sustainability 

of the agricultural sector. Moreover, EU poor self-sufficiency for protein crops implies the 

exposition of the feedstuff, livestock, meat, and dairy sectors (Häusling, 2011) to trade 

distortions (Henseler et al., 2013), sustainability (Minderhoud, 2010; Elgert, 2013) and 

scarcity issues, and price volatility of soybean on the global market (De Visser et al., 2014). 

In the coming years, the predicted global increase in meat and dairy consumption due to the 

expected growth in both worldwide population and Gross Domestic Product risks to further 

exacerbate these problems (De Visser et al., 2014; Clément et al., 2018). 

The insufficient internal production of protein-rich feed materials led to an EU Parliament 

motion in 2011, advocating for long-term policies providing an economic support to legume 

research and adoption in agronomic rotations. This document identified some prominent 

reasons, among others, for the competitive disadvantage hitting the EU feed and livestock 

sectors, including: (1) the different regulatory systems existing for GMOs inside and outside 

the EU; (2) the need to largely import feed proteins while complying with the zero-tolerance 

policy on the presence of unapproved GMOs; (3) the under-exploitation of the feed industry 

potential due to the poor volumes of protein crops produced internally and the severe 

regulatory constraints on importations (Häusling, 2011). In 2017, the European Soya 

Declaration signed by fourteen member states highlighted the need to increase the internal 

production of protein crops and led to the formulation of the EU Protein Plan (European 

Commission, 2018), aimed at characterizing protein demand and identifying measures to 

enhance protein crop competitiveness (FEFAC, n.d.). In fact, despite the growing policy 

interest around legumes (Clément et al., 2018), the EU still lacks specific measures to support 

their cultivation, which can optionally be established by member states within the Greening 

Measures (crop diversification), Agri-environment Schemes (i.e., Ecological Focus Areas 

(EFA) in Pillar 1), or Voluntary Coupled Support (VCS) of Common Agricultural Policy 

(CAP) (Balázs et al., 2021). However, none of these categories of measures has been really 

effective in promoting legume adoption, since crop diversification guidelines lack indications 

about the species to be employed, EFA envisages other options for enhancing biodiversity 

(e.g., hedgerows, buffer strips, afforested areas) (Bues et al., 2013), and VCS is just a generic 

incentive to prevent production drops in specific agricultural sectors with an economic, 

social, or environmental value (Clément et al., 2018). Consequently, national policies 
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supporting legume cultivation exist in a small number of member states and are relevant only 

for specific regions within each state (Zander et al., 2016). The new CAP, which has become 

effective in 2023 and will remain in force until 2027, although still lacking specific measures 

for legumes, set some mandatory Good Agricultural and Environmental Conditions (GAEC) 

that may encourage legume adoption in cropping systems. Especially, GAEC on soil 

protection and quality oblige farms above 10 hectares to adopt crop rotation, which can be 

substituted by crop diversification only when it contributes to the preservation of soil fertility 

(European Commission, n.d.), with legumes representing a fundamental resource for both 

tasks. Anyway, in addition to policies promoting legume cultivation, an increased EU self-

sufficiency for protein crops requires the creation of a value chain by infrastructure and 

market development, sharing of knowledge and best practices, effective market monitoring, 

and solutions to the fragmentation and inconsistency of the existing funding measures 

(European Commission, 2018; Balázs et al., 2021). 

 

 

1.3. Pea (Pisum sativum L.) 

1.3.1. Taxonomic, botanic, and agronomic characteristics 

Field pea (Pisum sativum L.) is a self-pollinated, diploid, C3 species from Pisum genus 

belonging to the Fabaceae family (Smýkal et al., 2015), section Vicieae (Baldoni and 

Giardini, 2001, p. 361). It is native to western Asia, between Turkey and Iraq, and it was 

likely domesticated between 9,000 and 10,000 years ago as part of the Neolithic crop 

assemblage (Zohary and Hopf, 1973; Weeden, 2007; Abbo and Gopher, 2017). Pisum 

sativum L. is one of the two species currently attributed to the Pisum genus together with 

Pisum fulvum, namely one of its wild relatives, and includes the subspecies sativum and 

elatius, containing all cultivated and wild types, respectively (Davis, 1970). Subspecies 

sativum includes two varieties, namely sativum and arvense (Smartt, 1990, p. 179), which are 

used for grain and forage production, respectively (Baldoni and Giardini, 1981, p. 320), while 

subspecies elatius contains varieties elatius, pumilio (or humile), and brevipedunculatum 

(Smartt, 1990, p. 179; Table 3). The following information is referred to Pisum sativum L. 

spp. sativum var. sativum, which includes all the materials employed in the current work. 

 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pisum
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fabaceae
https://www.sciencedirect.com/science/article/pii/B9780128191941000098#bb0940
https://www.sciencedirect.com/science/article/pii/B9780128191941000098#bb1160
https://www.sciencedirect.com/science/article/pii/B9780128191941000098#bb1115
https://www.sciencedirect.com/science/article/pii/B9780128191941000098#bb0010
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pisum
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Table 3. Taxonomy of genus Pisum (Davis, 1970; Polhill and Van det Maesen, 1985). (Source: Smartt, 1990, 

p. 179). 

P. sativum L.   

 ssp. sativum var. sativum 

  var. arvense 

 ssp. elatius var. elatius 

  var. pumilio (or humile) 

  var. brevipedunculatum 

P. fulvum   

 

Pea plant is characterized by hypogeal germination (Baldoni and Giardini, 2001, p. 361) and 

is composed by one or several stems, since axillary meristems at the lower nodes can either 

produce branches or abort (Lake et al., 2021). The leaf consists of two oblong amplexicaul 

stipules with a waxy cuticle, one or several pairs of oval leaflets with smooth margins, and 

tendrils at the top of the rachis (Baldoni and Giardini, 2001, p. 361-362; Lake et al., 2021; 

Figure 6). Field pea displays three main leaf morphologies, that is conventional (Figure 6), 

semi-leafless, where leaves are replaced by tendrils, or completely leafless, where both leaves 

and stipules are replaced by tendrils (Uzun et al., 2005; Mikić et al., 2011; Tafesse et al., 

2019). The inflorescence is placed at the leaf axil and consists of a pedunculated raceme with 

1-3 hermaphrodite flowers displaying small bracts and the typical Fabaceae morphology, that 

is an orbicular clavate corolla with five petals, the upper one (standard) embracing the two 

lateral ones (wings), and the bottom one forming a ridge (keel) (Figure 7). The calyx is 

campanulate with five sepals of different length, the androecium presents ten diadelfian 

stamens and anthers of uniform length, while the ovary is flattened with an inclined hairy 

style and 3-10 ovules disposed in two rows (Baldoni and Giardini, 2001, p. 362). Pea is a 

cleistogamous species, which means it is mostly self-pollinated, even if crossing mediated by 

pollinators can occasionally occur (Cousin, 1997). Normally, pea has an indeterminate 

growth habit, but all the varieties employed for industrial cultivation are determinate, which 

allows for simultaneous maturation (Baldoni and Giardini, 2001, p. 372). In determinate 

types, leaf formation ceases with onset of flowering (Baldoni and Giardini, 2001, p. 364) and 

harvesting is performed when plants are 0.35-1.0 m high (Lake et al., 2021). Depending on 

plant height, pea cultivars can be classified as dwarf, semi-dwarf, or climbing, with the first 

ones being the most common in intensive cultivation. Pea fruit is a pod of variable length 

(normally 6-10 cm) and width, hunched or straight, green and sharpened at the ends, 
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containing 4-10 seeds, and whose section can present different forms. Lower fertile nodes 

normally produce more numerous and larger pods compared with the upper ones (Baldoni 

and Giardini, 2001, p. 361-365). Despite the presence of a certain variability for pod 

indehiscence level (Hradilova et al., 2017), the ‘sugar pod’ mutation, causing reduced pod 

parchment and thus contributing to shattering minimization, is largely predominant among 

cultivated types allowing for flexibility in harvesting time (Siddique et al., 2013; Sadras et al., 

2019). The seed colour is determined by the combination of the seed coat and cotyledon 

colour, normally appearing between green and yellow, while the seed shape is often round, 

but can also be oval, flattened, squared, hexagonal, or irregular. Dry seed can be smooth, 

wrinkled, or present an intermediate state (Baldoni and Giardini, 2001, p. 363), and individual 

seed weight varies approximately from 175 to 300 mg (Sadras, 2007). Pea root system 

consists in a taproot of variable length from which thin lateral roots depart (Baldoni and 

Giardini, 2001, p. 361), hosting nodules appointed to biological nitrogen fixation through the 

symbiosis with Rhizobium leguminosarum bv. viciae (Jensen, 1986; Voisin et al., 2002), 

providing nitrogen for about 30-50 kg/ha (Baldoni and Giardini, 2001, p. 366). 

Figure 6. Representation of a pea plant. (Source: Alberta Pulse Growers, n.d.). 
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Figure 7. Representation of Fabaceae flower morphology. (Source: Koirala, 2018). 

 

Field pea is cultivated in more than 100 countries (Yadav et al., 2010; Singh et al., 2013), 

generating a worldwide dry seed production of 12,403,522 tonnes (t, FAO, n.d.b; Figure 8) 

from 7,978,490 cultivated hectares (ha) in 2021 (FAO, n.d.b), and can rely on over 90,000 

accessions conserved in gene banks (Yadav et al., 2010; Singh et al., 2013). The top 

producers and exporters are Canada and Russia, while the top importers are India, Pakistan, 

Bangladesh, and China, although the latter is among top producers (FAO, n.d.c; Figure 8). 

Field pea is mainly grown to produce dry grains that can be used as food or feed for 

monogastric or polygastric animals, and, to a lower extent, fresh seed (4,017,704 ha in 2021, 

FAO, n.d.b), which can either be consumed directly or conserved by freezing or canning, and 

fodder. The main outlet for pea grown in Europe, north America, and Australia is animal 

feed, but the demand for human food has been expanding considerably since the 2000s (Lake 

et al., 2021). Cultivars with yellow grains are mostly employed by the feed sector or for 

functional ingredient production, while varieties with light green grains and wrinkled dark 

green seeds are preferred for canning and freezing, respectively. In the EU, five pea classes 

are identified for commercial purposes based on seed diameter, going from “extra-fine” to 

“medium” with diameter lower than 7.5 mm and higher than 10.2 mm, respectively. Seed 

composition is influenced by climate and soil (Nikolopoulou et al., 2007) and on average 

consists in 26% of protein, 67% of starch, 2% of fat, 2% of fibre, and 3% of other elements, 

including calcium, iron, and phosphorus. Like other legume species, pea is characterized by 

a low content of sulphur amino acids, namely methionine and cysteine (Baldoni and Giardini, 

2001, p. 370-371). Moreover, pea grains contain several active compounds, including 

polyphenolics, vitamins, saponins, galactose oligosaccharides (Dahl et al., 2012), and 

tannins, which were found in coloured peas (Bastianelli et al., 1998). Although their 



19 

 

concentration tends to be low in cultivars, pea like other legumes contains trypsin inhibitors 

(Cousin, 1997), namely proteins suppressing the activity of pancreatic enzymes trypsin and 

chymotrypsin, thereby causing a reduction in the digestion and absorption of dietary proteins 

(Gemede and Ratta, 2014). These compounds can be denatured by heat (Lake et al., 2021), 

but their presence remains problematic especially for animal feeding since the seed is 

normally employed directly without pre-processing (Duc et al., 2015). Mean pea yield in the 

last century was estimated at 1.7 t/ha globally, whereas potential yields may exceed 6 t/ha 

(Smýkal et al., 2015). Mean yield improvement per year amounted to 16 kg/ha between 1961 

and 2017 (Figure 9), while that of wheat reached 40 kg/ha (FAO, n.d.c). Noticeably, the mean 

rate of yield improvement per year between 1961 and 1990 was of 21 kg/ha, afterwards 

experiencing a considerable decline due to the reduced cultivation interest leading to a drop 

in research investments (Lake et al., 2021). For pea destined to fresh consumption or 

conservation by canning or freezing, grain yield can range between 9 and 12 t/ha, whereas 

the cultivation of indeterminate types by trellis can ensure higher yielding performance 

(Baldoni and Giardini, 2001, p. 370). 

Figure 8. Worldwide pea production of dry seed during 2021 measured in tonnes (t). (Source: FAO, n.d.b). 
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Figure 9. Global pea cultivated surface and grain yield from 1961 to 2017. (Source: FAO, n.d.d). 

 

Pea can be grown in rotation with cereals and/or oilseeds both as a single crop or in multi-

crop systems. In temperate regions, it can be cultivated either as a spring-sown crop in 

environments characterized by very cold winters, such as northern Europe, Canada, and parts 

of the United States (US), or as an autumn-sown crop in Mediterranean-like environments 

featuring milder winters, such as southern Europe and Australia (Lake et al., 2021). In India 

and Bangladesh, it is sometimes grown as a relay crop in the dry season between successive 

rice crops (Ali and Sarker, 2013). Intercropping with canola, faba bean, wheat, or maize, was 

often observed to lead to improved yield and yield stability when compared to equivalent 

areas of the single component crops (Stelling, 1997; Soetedjo et al., 1998; Tan et al., 2020). 

Field pea, either grown as a single crop or in combination with other species, can be used as 

a catch or cover crop, or as green or brown manure. Pea inclusion in agronomic rotations 

based on cereals and/or oilseeds can provide several benefits, such as biological nitrogen 

fixation, the supply of nitrogen-rich crop residues, improved phosphorus availability (Ha et 

al., 2007), broader weed control options, reduced pest, disease and weed risk, soil structure 

improvement, size and diversity increase of microorganism population (Lake et al., 2021). 

Indeed, field pea was consistently observed to generate remarkable yield gains in the 

subsequent wheat crop compared with continuous cropping, e.g., in United Kingdom 

(Vaidyanathan et al. 1987) and Australia (Seymour et al., 2012; Angus et al., 2015). For these 

reasons, pea adoption in agronomic rotations can lead to a decrease in the use of pesticides 

and synthetic nitrogen fertilizers, contributing to improve the profitability of the agricultural 

systems and providing opportunities in food and feed markets (Lake et al., 2021). In this 

regard, pea cultivation was estimated to be more profitable than that of standard milling wheat 
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in France due to lower operational costs (30-100 €/ha less in 2017), higher market price 

(20%–45% more over 2012–16) (Terres Inovia, 2017), and the presence of EU VCS 

incentive, while in Australia the scenario was the opposite due to wheat yield being about 

twice that of pea in low-rainfall farms (Lake et al., 2021). In the US, the Farm Act ensures a 

minimum return for pea cultivation, acknowledging its role in agricultural system 

sustainability (Yadav et al., 2010). Furthermore, pea is particularly suited to minimum or no 

tillage systems since it produces a low amount of straw, therefore allowing for an effective 

establishment of the following crop. Finally, field pea cultivation, especially as a winter crop, 

may favour work division and diversification of management practices. Indeed, sowing and 

harvesting are performed later compared with the main autumn-sown crops grown in Europe, 

and pea variability for cycle length in response to the external conditions enables its 

cultivation in different environments. For instance, in Australia pea can be sown later than 

other winter crops facilitating disease and weed management, although late sowing tends to 

decrease yield potential, and it is harvested earlier than cereals, which can reduce yield losses 

from terminal drought stress and pod shattering (Lake et al., 2021).  

In Europe, soil preparation consists of autumn ploughing to 0.3 m followed by harrowing. 

Sowing is performed by a cereal seed drill with row spacing of 0.18-0.22 m in the period 

from September to April (Baldoni and Giardini, 2001, p. 367-368), most frequently around 

mid-November (Karkanis et al., 2016). The environment determines the sowing time and the 

consequent choice of cultivar phenological type, that can be (1) spring, (2) classical winter, 

or (3) winter ‘Hr’ type, with (1) and (2) being day neutral, while (3) is highly responsive to 

photoperiod (Lejeune-Hénaut et al., 2008; Bénézit et al., 2017). Autumn-sowing ensures 

higher yielding potential compared with spring-sowing, leading to an estimated yield increase 

of 56% in Italy (Annicchiarico and Filippi, 2007), thanks to the longer cropping cycle, higher 

radiation use efficiency in early spring, and drought escape during grain filling (Stoddard et 

al., 2006; Urbatzka et al., 2011). Seed dose amounts to 100-130 seeds/m2 and sowing depth 

to 3-4 cm. In the case of pea destined to the transformation industry, either several varieties 

featuring different cycle lengths are sown at the same time or scalar sowing is employed for 

the same cultivar, to extend the period of product supply to the processing plants. Chemical 

weeding can be performed before sowing or pre- or post-emergence, while irrigation is 

normally not employed. Pea meant to dry seed production is harvested when grains reach a 

humidity of 18-24% by a cereal combine, and then is desiccated to 13% humidity to increase 

storage life. For crops destined to the transformation industry, harvesting is performed by 

dedicated machines and the correct timing is established by measuring seed hardness, which 
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is proportional to starch concentration and inversely correlated to sugar content, due to sugars 

being converted into starch during seed maturation. A lower grain hardness is required by the 

freezing compared to the canning industry. 

Optimal temperatures in the initial cultivation phase range between 10°C and 20°C (Baldoni 

and Giardini, 2001, p. 366-370) with base germination temperature being around -1.1°C 

(Raveneau et al., 2011), whereas higher temperatures can cause cycle acceleration leading to 

seed quality deterioration. Spring frosts featuring temperatures lower than -4°C can damage 

pea vegetative system possibly causing plant death (Baldoni and Giardini, 2001, p. 366), 

especially at the seedling stage (Meyer and Badaruddin, 2001), while after winter hardening 

pea can tolerate rhizosphere temperatures as low as -8.5°C (Murray et al., 1988, p. 831-843). 

Like most legumes, pea is sensitive to freezing temperatures, particularly at the flowering, 

early pod formation, and seed filling stages (Maqbool et al., 2010). Moreover, it is susceptible 

to soil compaction (Siczek et al., 2013), water logging, and calcareous or saline soil, with 

optimal pH being around 5.5-6.5. Drought and heat stress occurring from onset of flowering 

to the end of grain filling can severely diminish yield potential, due to reduced flower 

fertilization (Baldoni and Giardini, 2001, p. 364-366) and/or photosynthesis rate 

(Annicchiarico et al., 2017a). 

Several biotic stresses can limit pea cultivation and productivity. The main fungal diseases 

are anthracnose, which is caused by three diverse types of fungi (Ascochyta pisi, 

Mycosphaerella pinodes, and Ascochyta pinodella) and is transmitted by infected seeds or 

crop residuals, and Fusarium oxysporum pisi, a terricolous fungus for which resistant 

varieties are available causing plant death or yield losses by early or late infections. Other 

common fungal pathogens are Pythium debaryanum and ultimum, causing plant rot at early 

stages, Botrytis cinerea, which can be particularly detrimental during pod formation and 

filling, Erysiphe polygoni, Septoria pisi, and Uromyces pisi. All these fungal diseases are 

favoured by the presence of humid conditions. Among bacterial pathogens, Pseudomonas 

pisi is especially harmful since it can damage all the vegetative organs and the seeds, through 

which it can be transmitted to the following generations. Seed coating, rotations, and the use 

of sane seed and resistant varieties are the most common means to counteract these diseases. 

Several viruses can infect pea, the more frequent being Pea Common Mosaic Virus and Top 

Yellow Virus. Three species of insect pests are especially relevant for pea, that is pea weevil 

(Bruchus pisorum; Figure 10) and Laspeyresia nigricana, namely a coleopter and a budworm 

whose larvae feed on seeds, and pea aphid (Acyrthosiphon pisum), which can transmit viruses 
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and cause yield losses by damaging flowers (Baldoni and Giardini, 2001, p. 373). Among 

holoparasitic plants, crenate broomrape (Orobanche crenata Forsk.) can severely hamper pea 

cultivation in the Mediterrean region and eastern Asia (Rubiales et al., 2003). Chemical 

treatments and warehouse disinfestation, and pre- or post-emergence weeding are the most 

common control measures employed for insect pests (Baldoni and Giardini, 2001, p. 373; 

Ferrari et al., 2006) and broomrape (Rubiales et al., 2003), respectively. 

Figure 10. Pea weevil (Bruchus pisorum, left) and its damage (right, from left to right: opened exit hole, 

emerging adult, and unopened exit hole). (Source: Cesar Australia, n.d.). 

 

 

1.3.2. Pea potential for European agriculture and major breeding goals 

Field pea is the most widely grown grain legume in Europe due to its higher yielding potential 

compared with other cool-season grain legumes in the western (Carrouée et al., 2003) and 

southern region (Annicchiarico, 2008), and a moderately good rate of yield genetic progress 

(Annicchiarico, 2017). Pea diffusion in this area is motivated, among others, by its adaptation 

capacity to a broad range of climates, from continental to semiarid, thanks to different cultivar 

phenological types that allow for spring-sowing in central and northern Europe minimizing 

the risk of frost damage, and autumn-sowing in the south (Karkanis et al., 2016). In Europe, 

human consumption of pulses is lower than in other regions of the world (Schneider, 2002), 

with pea being one of the most popular legumes in local diets (Karkanis et al., 2016). 

Furthermore, pea use as livestock feed is common for monogastric animals in Europe (Brenes 

et al., 1989; Gatel and Grosjean, 1990), and can further expand, since its potential to 

effectively substitute soybean in animal diets was demonstrated for beef (Anderson et al., 

2007; Soto-Navarro et al., 2012) and dairy cattle (Khorasani et al., 2001; Volpelli et al., 

2009), and meat lambs (Lanza et al., 2003). An even partial replacement of soybean by pea 

for animal feeding in Europe would help to mitigate the several issues related to soybean 

cultivation and importation, especially from south America, as described in paragraph 1.2.3. 
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Moreover, pea cultivation may contribute to alleviate soil organic matter deficiency in 

southern Europe thanks to legume capacity to improve soil fertility and properties (Carranca 

et al., 1999; Piotrowska and Wilczewski, 2012), considering that in this area yield gap with 

cereals is less pronounced compared with the rest of the continent (Nemecek et al., 2008; 

Stoddard, 2013) due to autumn-sowing extending cycle length (Karkanis et al., 2016). In 

addition, pea lower yielding ability compared to other crops, such as wheat, may contribute 

to generate higher prices, without considering other long-term benefits of its inclusion in 

agronomic rotations (Karkanis et al., 2016). The growing market interest for organic 

agriculture represents a further opportunity to expand pea cultivation (Barbieri et al., 2021), 

despite a yield penalty of 10-14% compared with conventional management (Gopinath et al., 

2009) due to increased pest, disease, and weed infestation risk (Corre-Hellou and Crozat, 

2005). The main factors affecting pea cultivation in Europe are summarized in Figure 11.  

Figure 11. Main factors affecting pea cultivation in Europe. (Source: Karkanis et al., 2016). 

 

Breeding progresses achieved in the past decades have contributed to increase the agronomic 

interest around pea, e.g., by improving standing ability through the incorporation of recessive 

afila alleles converting leaflets into tendrils (Snoad, 1974; Davies, 1977; Hedley and 

Ambrose, 1981), introducing resistance to powdery mildew (Erysiphe pisi, Harland, 1948), 

and developing determinate genotypes (Marx, 1977) with a high number of flowers per node 

(Hardwick et al., 1979). Nevertheless, yield instability due to biotic and abiotic stresses 

(Sagan et al., 1993; Cousin, 1997) together with the lower yield compared with other crops, 

such as wheat, which was reported to produce more than twice in Germany, Spain, and UK 

(Nemecek et al., 2008; Stoddard, 2013), represent major constraints to pea extensive adoption 



25 

 

(Karkanis et al., 2016). As regards plant architecture, pea variable standing ability still 

represents the overriding problem, despite the improvement generated by the introduction of 

semi-leafless genotypes. In this sense, a deeper understanding of the factors affecting stem 

mechanics may possibly lead to further advancements (Ambrose, 2008, p. 14-15). Among 

abiotic stress factors, drought, which is often combined with heat stress (Ranalli, 1995), 

constitutes the main limitation to pea cultivation worldwide, being particularly harmful in the 

Mediterranean area during seed development phases (Annicchiarico et al., 2017a). Drought 

stress is expected to become more frequent in the Mediterranean area and to expand 

northward and eastward due to climate change (Alessandri et al., 2014), enhancing the 

importance of finding tolerant genotypes that can rely either on drought escape via early 

flowering (Fang and Xiong, 2015), which is crucial in Mediterranean-like environments 

allowing autumn-sowing (Turner et al., 2001), or intrinsic tolerance (Fang and Xiong, 2015). 

Autumn-sown cultivars, besides ensuring a higher yielding potential by cycle extension and 

terminal drought escape, may also contribute to increase pea adoption in regions 

characterized by a continental climate (Duc et al., 2015). In this context, cold tolerance 

emerges as a major breeding goal not only for inland areas, but also for the Mediterranean 

region, where plants partially hardened or de-hardened may suffer from frost events of even 

limited duration and severity (Annicchiarico and Iannucci, 2007), advocating for cultivars 

with an elevated freezing tolerance and a slow de-hardening (Vocanson and Jeuffroy, 2007). 

As regards biotic stresses, paramount breeding targets are represented by resistance to 

Aphanomyces euteiches, Peronospora viciae, anthracnose, aphids (Acyrthosiphon pisum), 

and bruchids (Bruchus pisorum, Bruchus affinis) (Ambrose, 2008, p. 15). Since grain protein 

content of pea commercial cultivars is modest, usually ranging between 22 and 26% on a dry-

matter basis, its increase represents a major breeding objective for both animal feeding and 

human consumption (Burstin et al., 2011; Duc et al., 2015). Besides the common need to 

minimize trypsin inhibitor content (Duc et al., 2015), other seed qualitative traits may be 

relevant for specific market outlets, such as a high sucrose concentration and its maintenance 

over a long time for varieties meant to the freezing industry.  

Due to pea strict self-pollination, the pedigree and single seed descent systems have been the 

most common breeding methods employed to generate pure line varieties, while bulk 

selection, which exploits natural selection to produce pure line cultivars, mixtures, or 

evolutionary populations, has been used less frequently. Recurrent backcross and, after the 

advent of molecular markers, marker-assisted selection (MAS), have largely been used for 

the introduction and selection of favourable alleles for monogenic or oligogenic traits, e.g., 
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disease or lodging tolerance and seed quality (Ambrose, 2008, p. 18). For the improvement 

of polygenic traits, such as grain yield, PS has been used traditionally, while GS (Meuwissen 

et al., 2001) was introduced more recently. Although a specific legal framework for cultivars 

produced by gene editing is still missing in the EU (Vanderschuren et al., 2023), this 

technology (Doudna and Charpentier, 2014; Li et al., 2023) together with pea genome 

sequencing (Kreplak et al., 2019; Yang et al., 2022) has opened new breeding scenarios by 

greatly enhancing the potential for molecular marker identification, and gene detection and 

mutation. 

 

1.3.3. Genetic and genomic resources 

A broad range of public genetic resources are available for pea due to the ease in the 

production and maintenance of inbred lines, the early domestication process, and the 

widespread cultivation, including several ex-situ germplasm collections (Table 4) that, in the 

absence of a dedicated CGIAR global institution, are coordinated by the International 

Consortium for Pea Genetic Resources. Several core collections have been established with 

different objectives and selection criteria, e.g., the distance of geographical origin according 

to passport information (Knüpffer and Van Hintum, 1995) or the dissimilarity based on 

molecular marker data (Elshire et al., 2011; Taranto et al., 2018; Singh et al., 2019). 

Moreover, the early interest in pea morphological variability has resulted in large mutant 

collections, such as that initiated by Lamprecht (Blixt, 1963; Lamprecht, 1974), to which 

mapping populations, near isogenic lines, and ancient material selected by seed saver 

organisations (Seed Savers Exchange, n.d.) have added more recently (Ambrose, 2008, p. 10-

11). Despite this remarkable body of genetic variation, its availability in a form that can be 

readily used in breeding programs, and the clarification of the underlying structure, drivers 

(Ambrose, 2004), and relationship with phenotypic variation for traits of interest (Crosta et 

al., 2023) still represent relevant open issues. 
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Table 4. Ex-situ germplasm collections with more than 1000 Pisum accessions. (Source: Ambrose, 2008, p. 

10). 

 

Pea genome is diploid, spans over the considerable length of 4.45 gigabases, and is organised 

into seven chromosomes (2n = 14) showing extended primary constrictions due to the 

presence of multiple domains of centromeric chromatin. Repeated sequences are largely 

diffused, since transposable elements constitute more than 83% of the genome, with long-

terminal repeat retrotransposons (LTR) representing 72.7% (Figure 12). The most recent 

whole genome duplication event in pea history is that associated to the crown Leguminosae 

divergence dating back to about 55 million years ago. Since pea divergence from other tribes, 

its genome has been subject to higher point mutation and gene rearrangement rates compared 

with the other sequenced legume genomes, which is likely due, at least in part, to the 

abundance of LTR mostly from Gypsy Ogre group (Burstin et al., 2020). In addition to the 

first reference genome published by Kreplak et al. (2019), a second de-novo assembly was 

generated by Yang et al. (2022), featuring better continuity and quality in repeated regions, 

together with a pangenome of 118 wild and cultivated accessions, while exome resequencing 

was performed for 240 genotypes either selected from a wider germplasm collection (Siol et 

al., 2017) or chosen based on phenotype by Aubert et al. (2023). 

Figure 12. Representation of pea genome size (proportional to circle area) compared to other species, and of 

the contribution of different genetic components in terms of genome length. (Source: Burstin et al., 2020). 
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1.3.4. Grain yield and protein content: physiological and genetic control, and relationship 

Pea grain yield appears more closely related to seed number compared with seed weight 

(Doré et al., 1998; Poggio et al., 2005; Sadras, 2007; Sadras et al., 2013; Figure 13), with the 

former trait showing a linear (Guilioni et al., 2003) or curvilinear (Sadras et al., 2013) 

relationship with growth rate during a critical period including flowering (Lake et al., 2021). 

Nonlinearity may suggest a decoupling between vegetative and reproductive biomass growth 

under conditions favouring early canopy closure (Sadras et al., 2013), possibly due to altered 

light quality inside a dense canopy causing flower abortion (Lake et al., 2021). The number 

of seeds produced for each fertile node, determined by both pod number per node and seed 

number per pod, was observed to affect yield more when pea was subject to drought stress 

during flowering compared with regular water availability conditions, due to a reduction in 

the number of fertile nodes under drought (Munier-Jolain et al., 2010). Any factor decreasing 

the growth rate during the period from onset of flowering to the beginning of seed filling, 

including water deficit, heat and cold stress and nitrogen deficiency, can diminish the final 

seed number (Guilioni et al., 2003). Seed weight, which is essentially determined by seed 

growth rate and duration, is more affected by the genetics and less responsive to the 

environment compared with grain number (Lemontey et al., 2000). Seed growth rate is 

determined by the number of cotyledon cells (Munier-Jolain and Ney, 1998), which is fixed 

during embryogenesis and depends on the embryo trophic conditions (Weber et al., 1996; 

Lemontey, 1999), while seed filling stops when the available resources are exhausted or 

maximal seed size is reached (Burstin et al., 2007). As seed cell divisions span from flowering 

to the beginning of seed filling, any stress occurring in this period can impair seed weight 

(Lake et al., 2021).  

Figure 13. Least squares regression lines for grain yield vs. seed number (closed circles) or seed weight (open 

circles) for the semi-leafless pea cultivar Nitouche cultivated in southern Chile. (Source: Sandaña and Calderini, 

2012). 
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Seed protein content depends on the relative accumulation of starch and protein in grains 

(Lhuillier-Soundele et al., 1999) that is affected by both nitrogen availability during seed 

filling (source limitation), and embryo capacity to accumulate storage compounds (sink 

limitation) (Burstin et al., 2007). In legumes, nitrogen source capacity is influenced by both 

symbiotic fixation and soil assimilation (contributing 80% and 20% of the nitrogen acquired 

under favourable conditions, respectively, according to Salon et al., 2001) in proportions that 

vary with environmental conditions, such as water and mineral nitrogen availability, 

temperature and soil structure (Sprent et al., 1988; Salon et al., 2001), impacting both the 

plant status and the activity of nitrogen-fixing bacteria (Voisin et al., 2003a, b). During seed 

filling, assimilates are mainly destined to grains, while afterwards nitrogen is remobilized 

from vegetative organs (Schiltz et al., 2005) in correspondence of photosynthetic machinery 

degradation (Sinclair and de Witt, 1975, 1976) accounting for a considerable proportion of 

total seed nitrogen (Sinclair and de Witt, 1975; Schiltz et al., 2005). An example of 

mechanism controlling seed nitrogen storage capacity is that regulated by the R gene, which, 

if present in the recessive form, causes subnormal grain starch accumulation (Wang and 

Hedley, 1985; Turner et al., 1990; Craig et al., 1998, 1999), together with increased protein 

content, and wrinkled shape (Burstin et al., 2007). Finally, seed protein concentration showed 

a positive correlation with temperature sum (Karjalainen and Kortet, 1987), and phosphorus 

and nitrogen fertilization (Sosulski et al., 1974), while resulting somehow negatively 

correlated with precipitation during summer (Karjalainen and Kortet, 1987). 

Since the selection for enhanced grain protein content is likely to be performed concurrently 

with that for higher grain yield, determining the genetic relationship between these traits is 

crucial for breeding purposes. To our knowledge, genetic correlation was only assessed by 

Crosta et al. (2022), resulting mostly non-significant and thus encouraging the simultaneous 

improvement of these traits, while phenotypic correlation estimates varied from negative 

(around -0.4 in Tar’an et al., 2004 and Krajewski et al., 2011; −0.11 according to Klein et al., 

2020, but with large variation across populations and environments) to null (Cousin et al., 

1985; Bărbieru, 2021).  

Although many Quantitative Trait Loci (QTLs) have been detected in several studies for both 

grain protein content (Irzykowska and Wolko, 2004; Tar’an et al., 2004; Burstin et al., 2007; 

Krajewski et al., 2011; Klein et al., 2014; Gali et al., 2019; Klein et al., 2020) and yield or its 

components (Irzykowska and Wolko, 2004; Tar’an et al., 2004; Burstin et al., 2007; 

Krajewski et al., 2011; Klein et al., 2014; Gali et al., 2018; Gali et al., 2019; Klein et al., 
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2020), the frequently inconsistent genomic positioning and the small or unstable proportion 

of variance explained support the hypothesis of a polygenic control, in accordance with the 

complexity of the underlying physiological mechanisms (Burstin et al., 2007).  

 

 

1.4. Genomic selection 

1.4.1. The technique 

GS was initially conceived by Meuwissen et al. (2001) for animal breeding and only 

subsequently adopted by plant breeders. The core ideas behind GS are: (1) the formulation of 

a prediction model based on all the available genome-wide markers, whose effects can be 

estimated even if their number exceeds that of observations by considering them as random 

effects, and (2) the estimation of individual breeding values (genomic estimated breeding 

values or GEBV), namely trait values attributable solely to the genetic component that are 

computed as the sum of the products between marker genotypes and the relative effects. The 

logics behind (2) is that, if marker density is high enough relative to linkage disequilibrium 

(LD) decay pattern in the population, there must be a marker linked to each QTL for a specific 

trait, so that all QTLs can be tracked simultaneously. GS model performance must be assessed 

on an independent dataset compared with that used for model training, a process that is 

defined as cross-validation. Indeed, when the predictors are more numerous than the 

observations, as in the case of most GS models, a perfect fit can be obtained due to an 

excessive adaptation of the model to the training data, a problem that is referred to as over-

fitting (Meuwissen et al., 2001; Heffner et al., 2009). An important issue in cross-validation 

is the correction for environmental effects, which allows to reinforce the intensity of the 

“genetic signal”. This is even more important when breeding data is unbalanced over 

environments for genetic effects, meaning that the genotypes are not the same in all the 

environments (e.g., because only the material selected basing on previous year data is tested 

the following year), so that environmental effects can mask or bias genetic effects. In plant 

breeding, the most common procedure consists in employing a model with genotype effect, 

which can either be fixed or random with no correlation structure, and environmental effects 

(e.g., year and location) that are usually considered as random if the genotype is taken as 

fixed or vice versa. Best linear unbiased estimators (BLUEs) and best linear unbiased 

predictions (BLUPs) are the solutions obtained when genotype is fixed or random, 
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respectively, and are employed for GS model training and validation. An alternative, when 

using statistical software that accept replicate data, is estimating environmental and genetic 

effects simultaneously to correct for the former without biasing the latter. In this case, the 

correction for environmental effects can be performed only in the training set or both in the 

training and validation sets, with the second option resulting in higher predictive ability 

values. Another important step is the definition of the cross-validation scheme, which 

determines the criterion for the division of data in training and validation set that can be either 

stratified or random, meaning that it can consider or not data grouping based on, e.g., 

environment, population etc. Three criteria can be employed, namely single data split 

following a stratified scheme by using, e.g., one or more environments or populations for 

validation, k-fold cross-validation, envisaging data division in k, random or stratified, groups 

of equal size with each group serving by turn as the validation set (Figure 14), or Leave-One-

Out schemes using by turn single individuals for validation. The optimal cross-validation 

scheme depends on the breeding application, with random schemes being usually less 

relevant for practice, while structured ones can be more representative of real-life scenarios, 

considering that the presence of relatives of validation individuals in the training set and the 

availability of larger training sets normally improve predictive ability. GS model performance 

is normally evaluated by predictive ability, namely the correlation between GEBV and 

phenotypic data expressed as BLUEs or BLUPs or corrected for environmental effect, while 

predictive accuracy represents the correlation between GEBV and the true breeding values 

and is obtained by dividing predictive ability by its potential maximum (which is equal to the 

square root of heritability when a single phenotype is associated to each genotype). GS 

models can account for G × E, dominance or epistatic effects, or covariance of genomic 

effects for multiple traits (multi-trait GS models), if these components are considered relevant 

for a specific breeding scenario. The main advantages of GS compared with PS can be 

expressed by referring to breeders’ equation parameters as: (1) reduction of the time 

necessary to perform one selection cycle, thanks to early selection relying on genomic 

information and accelerated generation advancement; (2) increase of selection intensity 

thanks to the lower individual evaluation time and, possibly, cost; (3) improvement of 

selection accuracy for similar times and costs due to the use of genomic information (Janss 

and Ramstein, 2023).  
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Figure 14. Representation of two stratified cross-validation schemes, in the former two individuals from each 

population are included in the validation set, in the latter one population is employed as the validation set. 

(Source: Janss and Ramstein, 2023). 

 

As regards the possible pipelines for GS implementation in breeding programs featuring a 

low or intermediate investment level, it is crucial to consider that the development of the 

training set and that of the population to be evaluated should proceed in parallel to maximize 

the time gain relative to PS. For instance, two scenarios can be hypothesized, one assuming 

intermediate or high economic means in which one or more growth chambers and 

greenhouses are available, and the other one featuring a lower investment level and relying 

only on greenhouses. In the first scenario, the subset of lines forming the training set can be 

advanced through generations by using growth chambers allowing to perform at least four 

generations per year, while the rest of material can be advanced at the rate of two generations 

per year in greenhouses. In the lower budget scenario, greenhouses can be employed to 

advance the GS training set, whereas the other material can be grown in the field performing 

one generation per year. Moreover, mass selection based on agronomic, or disease resistance 

traits can be applied on the selection target material after the initial selfing generations of RIL 

population construction to eliminate genotypes with undesirable characteristics. If enough 

resources for genotyping are available, GS based on Optimal Haploid Value (Daetwyler et 

al., 2015) can be applied on segregating individuals from early generations in RIL population 

construction, to minimize the duration of the selection cycle. Finally, having a genetically 

wide GS training population, e.g., formed by factorial crossings between a moderately large 

set of parental lines, as performed in pioneer studies in white lupin (Pecetti et al., 2023), may 

reduce the need for population-specific models possibly allowing for GS continuous 

application relying on regular model updating based on new phenotypic data. 
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1.4.2. Statistical models 

The first GS model was introduced by Meuwissen et al. (2001) under the name of BLUP, and 

now is still commonly used and referred to as whole-genome random regression or ridge-

regression BLUP (rrBLUP). This model can be written in the most general form as: 

 

y = Xa + Wb + e                 

 

where X is a matrix of eventual environmental covariates with one row per individual and 

one column per covariate, a is the vector of eventual environmental effects, W is the matrix 

of individual marker genotypes with one row per individual and one column per marker, b is 

a vector of marker effects, and e is a vector of residuals. All marker effects bi are fitted 

simultaneously, since they are considered as random effects coming from the same normal 

distribution and thus featuring a common variance, which can be written as:  

 

bi ∼ N (0, σ2
b)                

 

where σ2
b represents mean marker variance (Janss and Ramstein, 2023). 

Since a model with a large set of predictors can be transformed into a model based on a 

similarity matrix, this property was exploited to reformulate rrBLUP into a different form 

named as genomic BLUP (GBLUP) that directly models the individual breeding values (g = 

Wb) as random effects distributing according to: 

 

g ∼ N (0, WW′σ2
b) 

 

Since the explained variance of GBLUP is the same of rrBLUP, these two models are 

equivalent and the only difference lies in the computational effort, which is inferior for 

GBLUP due to the lower number of parameters estimated (VanRaden, 2008).  

A variant of GBLUP is the so called weighted GBLUP (WGBLUP) envisaging marker 

weight adjustment based on effect estimates from a preliminary GWAS, which can be 

advantageous compared with rrBLUP or GBLUP for traits featuring major QTLs (Wang et 

al., 2012). 

Bayesian models can benefit from an enhanced flexibility compared to the above-mentioned 

linear mixed models, since marker effects can follow distributions other than normal. For 

instance, distributions featuring larger tails allow to put more weight on specific markers, 
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which can be advantageous for traits featuring major QTLs or when model prediction is 

performed on more advanced generations compared to training (Janss and Ramstein, 2023). 

Common Bayesian models are BayesA, Bayesian Lasso, and Power Lasso envisaging t, 

double exponential, and exponential power prior distribution of marker effects, respectively 

(Tibshirani, 1996; Meuwissen et al., 2001; Park and Casella, 2008). Variable selection 

models are a special class of Bayesian models that estimate for each marker the probability 

of being relevant or not, meaning that marker effects can follow a prior normal distribution 

with a large or small variance (George and McCulloch, 1993). The probability of each marker 

to be relevant or not is also considered as a model parameter characterized by its own prior 

distribution, which is constructed to allow only a few effects to be large, while the great 

majority is forced to be small (Janss and Ramstein, 2023). Common GS models belonging to 

this class are BayesB and BayesC, with the former featuring zero variance for the non-

relevant markers and marker-specific variance for the relevant ones according to a t prior, 

while the latter envisages zero effect for non-relevant markers (Meuwissen et al., 2001; 

Habier et al., 2011). 

 

1.4.3. Comparison with marker-assisted selection 

MAS relies on gene mapping to identify the markers significantly associated to traits of 

interest to be used in the breeding process. Gene mapping can consist of either linkage or 

association mapping, where the former requires the creation of experimental populations 

usually from crossings between accessions with extreme phenotypes, while the latter relies 

on natural populations or germplasm collections. On one side, linkage mapping is more 

suitable to investigate the effect of rare alleles thanks to the balanced allelic frequencies 

characterizing artificial populations, but its results are less transferable to breeding material. 

On the other hand, association mapping ensures higher allelic diversity and mapping 

resolution due to several generations of recombination rearranging the original haplotypes. 

Besides the long times required by gene mapping and validation, MAS features low statistical 

power for the detection of small effect QTLs characterizing especially polygenic traits, which 

leads to the identification of a small fraction of the total QTLs (those featuring large effect) 

whose effect tends to be overestimated due to positive bias (Beavis effect). MAS limited 

statistical power largely depends on the need to adopt a stringent significance threshold to 

counteract the false positive increase due to the high number of markers that are usually 

tested, implying a reduction in the chance of finding true positive effects (multiple testing 

problem). Moreover, when several QTLs are found, pyramiding their alleles by MAS can 
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become time-consuming. For these reasons, MAS is normally successful for traits controlled 

by a small number of genes featuring a large effect, while it displays poor performance for 

polygenic traits. GS is much more effective than MAS when breeding for polygenic traits, 

since the inclusion of all the genotyped markers in the prediction model, without any previous 

selection step, allows to account for all the relevant effects if the marker density is sufficient 

(Meuwissen et al., 2001; Heffner et al., 2009). 

 

1.4.4. State of the art for grain yield and protein content improvement in pea 

Previous studies highlighted encouraging results for genomic prediction of pea grain yield or 

its components in different water availability conditions, cross-validation scenarios, 

including inter-population and inter-environment predictions, despite with some variability 

between environments and populations, and materials, such as breeding lines and germplasm 

collections (Burstin et al., 2015; Tayeh et al., 2015; Annicchiarico et al., 2017a, 2019, 2020; 

Al Bari et al., 2021). Moreover, a superior predicted efficiency of GS relative to PS for grain 

yield improvement was repeatedly reported in different water availability conditions and 

cross-validation scenarios (Annicchiarico et al., 2017a, 2019, 2020), although field 

assessments supporting this information are missing. A great influence of G × E interaction 

emerged for grain yield, especially across southern European environments, where it 

appeared more affected by year-to-year climatic variation than by geographical distance. This 

suggested the convenience of breeding for wide adaptation in sub-regions belonging to this 

area, such as Italy (Annicchiarico and Iannucci, 2008; Pecetti et al., 2019), which motivates 

our choice of considering environments of northern and central Italy as part of the same target 

region. To our knowledge, no information is currently available about GS model predictive 

ability or G × E interaction size relative to the genetic effects for grain protein content, with 

G × E that was reported as modest or non-significant in some studies (Matthews and Arthur, 

1985; Krajewski et al., 2011) and significant in others (Burstin et al., 2007). 

 

 

1.5. Research objectives 

The general objective of the thesis work was the investigation of GS potential for the 

improvement of grain yield, protein content, and especially protein yield in pea, both per se 

and relative to PS in environments of northern and central Italy. The special focus on protein 

yield is motivated by its major importance for pea use as a protein source in animal feeding. 
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In this context, the main specific objectives of the work described in the following chapters 

are: 

• Investigating the genetic architecture of grain yield and protein content 

• Investigating the potential of GS for the prediction of grain yield, protein content, and 

protein yield in several scenarios differing for cross-validation configuration, with a 

particular interest for inter-environment and inter-population predictions  

• Assessing the rate of genetic progress achieved for grain and protein yield by GS and PS 
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2. Pea grain protein content across Italian environments: genetic relationship 

with grain yield, and opportunities for genomic selection for protein yield 

2.1. Objectives 

This study is complementary to that conducted by Annicchiarico et al. (2019) for grain yield 

and is aimed at assessing (1) the extent of G × E for grain protein content, (2) grain yield and 

protein content genetic correlation and genetic architecture, (3) GS predictive ability for 

protein yield and its predicted efficiency relative to PS, both in intra-population and inter-

population prediction scenarios. 

 

 

2.2. Materials and methods 

2.2.1. Plant material 

This study was based on the same plant material and test environments described in 

Annicchiarico et al. (2019) for grain yield data. It included 306 genotypes belonging to three 

Recombinant Inbred Line populations issued by connected crosses between three cultivars, 

i.e., the European Attika and Isard and the Australian Kaspa, which featured high and stable 

grain yield across Italian environments in a previous cultivar assessment (Annicchiarico, 

2005; Annicchiarico and Iannucci, 2008). Attika × Isard (A × I) included 102 lines, Kaspa × 

Attika (K × A) 100, and Kaspa × Isard (K × I) 104. The parental genotypes and the cultivar 

Spacial, which was used as a control because of its high yielding ability across Italian 

environments (Pecetti et al., 2019), were also included in field experiments, bringing the total 

tested genotypes to 310. DNA for genotyping was extracted from four F6 plants for each 

genotype grown in a non-heated glasshouse, while phenotyping was carried out on F7 plants.  

 

2.2.2. Phenotyping 

All field experiments were autumn-sown, rain-fed, and designed as a randomized complete 

block with three replicates and were identified hereafter by the combination of location and 

growing season as Lodi 2013–14, Lodi 2014–15, and Perugia 2013–14 (Picture 1). Lodi 
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(45°19′N, 9°30′E) is in northern Italy and is characterized by a subcontinental climate, 

whereas Perugia (43°06′N, 12°23′E) features a cool Mediterranean climate. An organic 

management was adopted in Lodi and Perugia 2013–14, while Lodi 2014–15 was managed 

conventionally. Additional details regarding experiment set up and grain yield assessment 

can be found in Annicchiarico et al. (2019). Grain protein content was determined on 100 g 

of dry seed per plot, which were previously ground by a cutting mill (Pulverisette 19, Fritsch 

GmbH, Germany) equipped with a 1 mm mesh sieve, by near-infrared spectroscopy (NIRS) 

with a Nirflex 500 spectrometer (Büchi, Italy) working in the 1,000–2,500 nm range. 348 plot 

samples were selected based on spectral information, of which 245 belonged to the current 

material set and 103 to the germplasm collection described in paragraph 3.2.1., according to 

a Kennard Stone multivariate design. The reference data were obtained by duplicate analysis 

of total nitrogen content by Dumas’ method with a ThermoQuest NA1500 elemental analyser 

(Carlo Erba, Milano, Italy) and atropine as a standard. Partial Least Squares method within 

PLS Toolbox 8.9 (Eigenvector Research Inc.) was employed to develop prediction models 

after applying a pre-processing to NIRS spectra consisting in 2nd derivative computation and 

mean centring. In addition, a ten-fold venetian blind cross-validation was performed to 

determine the optimal number of principal components (PCs) to be included in the prediction 

models. Two models were developed, either envisaging external parameter orthogonalization 

in the pre-processing of NIRS spectra or not, and predictions were based on the mean between 

their results. The mean across models for cross-validation R2 was equal to 0.78, and that for 

calibration R2 to 0.93, with minor differences between models. Both models showed an 

estimated error of prediction of 0.12 g of nitrogen every 100 g of sample. Grain protein 

content was obtained by multiplying the NIRS-estimated nitrogen content by 6.25. Protein 

yield was computed on a plot basis by multiplying dry grain yield by grain protein content. 

Picture 1. Field trial. 
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2.2.3. Statistical analysis of phenotypic data 

The following analyses were performed for grain yield, protein content, and protein yield of 

the lines belonging to the RIL populations, unless otherwise specified, by SAS/STAT® or R 

Studio. In all the analyses, variance components were estimated by restricted maximum 

likelihood (REML) method. RIL populations were compared for mean trait value in each 

environment by Duncan’s test based on the output of a mixed model with the RIL population 

as a fixed factor and the genotype within RIL population and the replicate as random factors. 

A mixed model with genotype and replicate as random factors was applied to data from each 

RIL population and environment to assess the significance of within-population variation and 

its extent as genetic coefficient of variation computed as CVg = SG / m × 100, where SG is the 

square root of genotype variance (𝑆𝐺
2), and m is trait mean value. A mixed model including 

the environment as a fixed factor and the genotype, its interaction with the environment, and 

the replicate as random factors was employed to test the significance of the variance 

components relative to genotype and G × E. Another mixed model with the RIL population, 

the genotype, their interaction with the environment, and the replicate as random factors, and 

the environment as a fixed factor was employed to test the significance of the variance 

components relative to the first two random factors and their interaction with the 

environment. G × E was further investigated by computing the genetic correlation of line trait 

values for pairwise combinations of environments as rg = r / H1H2, where r is the Pearson’s 

correlation of line trait values for a given combination of environments, and H1 and H2 are 

the square root of the broad-sense heritability on a genotype mean basis in each environment, 

computed as H2 = 𝑆𝐺
2  / (𝑆𝐺

2  + 𝑆𝑒
2 / n), with 𝑆𝐺

2  and 𝑆𝑒
2 representing variance components relative 

to genotype and error, and n the replicate number. Broad-sense heritability values were used 

to calculate BLUPs (DeLacy et al., 1996), which served as phenotypic data for GS and 

GWAS analyses. The genetic correlation between grain yield and protein content was 

estimated in each environment according to Piepho (2018) by using the freeware 

implementation in R proposed by Onofri (2019). The phenotypic correlation between protein 

yield and each of its components was estimated in each environment to assess the impact of 

grain yield and protein content on this trait. A mixed model including all genotypes (lines 

and parent/control cultivars), with genotype and environment as fixed factors and replicate 

as a random factor, was employed to assess the number of lines outyielding the control variety 

Spacial and the top-performing parent cultivar for all the target traits. 
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2.2.4. Genotyping and genomic data processing 

Information about DNA isolation and GBS can be found in Annicchiarico et al. (2017a). Raw 

reads for library construction were demultiplexed using axe demultiplexer (Murray and 

Borevitz, 2018). Trimming for restriction enzyme remnants, alignment on reference genome 

version 1a (Kreplak et al., 2019), and SNP calling were performed according to the dDocent 

pipeline (Puritz et al., 2014). The final genotype matrix, in the form of a vcf file, was filtered 

for quality by vcftool (Danecek et al., 2011), with parameters -minQ 30, -max-non-ref-af 1, 

and -non-ref-af 0.001. The resulting dataset was filtered for increasing levels of maximum 

missing per marker (mpm) values, amounting to 5%, 10%, 15%, 20%, and 30%. Markers that 

were monomorphic or with minor allele frequency (MAF) lower than 5% were removed. 

Afterwards, filtering according to maximum missing per sample (mps) thresholds of 10%, 

25%, and 50% was performed. Missing data imputation was performed according to the 

Random Forest method by R package MissForest (Stekhoven and Bühlmann, 2012), with the 

configuration ntree = 100, maxiter = 10, and genotypes defined as factors. 

 

2.2.5. Genomic selection 

The intra-population, inter-environment prediction scenario was assessed by a ten-fold 

stratified cross-validation scheme with ten repetitions, using two environments for training 

and one for validation according to all the possible combinations. Predictive ability was 

estimated separately for each RIL population to investigate within-population GS model 

performance. Results were averaged across repetitions, training environment sets, and RIL 

populations. Due to the satisfactory combination of computational performance and 

predictive ability that emerged from previous studies (Annicchiarico et al., 2019, 2020), 

rrBLUP (Meuwissen et al., 2001) was employed in this scenario to define the optimal mpm 

and mps thresholds to be employed for all the other GS analyses. Intra-population, inter-

environment predictions for the optimal mpm and mps thresholds were assessed by four GS 

models, namely rrBLUP, BayesA (Meuwissen et al., 2001), BayesC (Habier et al., 2011), 

and Bayesian Lasso (Park and Casella, 2008). Because of its good predictive ability and 

computational efficiency, rrBLUP was selected for assessing the inter-population, inter-

environment scenario, envisaging model training on data of one RIL population averaged 

across two environments and validation on data of each of the other two RIL populations in 

the remaining environment. All populations and pairs of environments were used by turn for 
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model training and the results were averaged across training sets. All the GS analyses were 

performed by the R package GROAN (Nazzicari and Biscarini, 2017). 

 

2.2.6. Comparison of genomic vs. phenotypic selection 

The correlation of each of mean phenotypic data across the two GS training environments 

and GEBV with phenotypic data in the validation environment was computed by averaging 

the results across all environment combinations and RIL populations, providing a comparison 

of PS vs. GS predicted performance for all the target traits. In addition, a comparison of GS 

vs. PS in terms of predicted efficiency, namely by accounting for differences in selection 

cycle duration and costs, was carried out for protein yield according to both the intra-

population inter-environment, and the inter-population inter-environment scenarios. GS 

predictive accuracy was estimated according to Lorenz et al. (2011) as rAc = rAb / H, where 

rAb is the predictive ability averaged across RIL populations and training environments, and 

H the square root of the broad-sense heritability on a genotype mean basis in the validation 

environment. The expected genetic gain per GS cycle was computed according to Heffner et 

al. (2010) as ΔGG = iG rAc sA, where iG is the standardized GS differential and sA the standard 

deviation of phenotypic values. To get GS expected genetic gain per year, ΔGG was divided 

by tG = 0.5, namely the duration in years of one GS cycle under the hypothesis of two selection 

cycles per year. PS expected genetic gain per year was estimated according to Falconer (1989) 

as ΔGP’ = iP H sA / tP, where iP is the standardized PS differential and tP the duration in years 

of one selection cycle, which was hypothesized as equal to 1 in the case of two locations 

tested during the same year, or 2, if the same or different locations are tested in two different 

years. For the assessment of the inter-population inter-environment scenario, broad-sense 

heritability on a genotype mean basis was estimated for each RIL population and pairwise 

combination of selection environments as H2 = 𝑆𝐺
2  / (𝑆𝐺

2  + 𝑆𝐺𝐸
2  / e + 𝑆𝑒

2 / e n), with 

𝑆𝐺𝐸
2  representing G × E variance component, e the number of environments, and other terms 

corresponding to previous definitions. Consequently, comparing GS with PS in terms of 

predicted efficiency means accounting for the gap between iG and iP arising from the different 

evaluation cost per genotype, which was hypothesized as equal to € 220 for PS and € 60 for 

GS. This means that for a given budget GS would allow to evaluate 3.7 times the genotypes 

that could be assessed by PS. Since the ratio of iG to iP varies between 1.316 and 1.445, 

hypothesizing to select either the top 2.7% of accessions by GS and 10% by PS, or 5.5% by 

GS and 20% by PS (Falconer, 1989), an intermediate ratio of 1.381 was considered. 
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2.2.7. Genome-wide association study and linkage disequilibrium decay 

GWAS was preferred to composite interval mapping (CIM), which is normally employed to 

identify marker-trait associations in experimental populations, because it allowed for a joint 

analysis of all the RILs. This ensured a much higher statistical power compared to that 

achievable by CIM, which would have relied on three separate within-population analyses, 

each based on about one third of the total number of individuals (simulations were run for 

QTLs controlling 1%, 5%, and 10% of phenotypic variance based on Wang and Xu, 2019). 

Population structure information to be included in the GWAS model was obtained by a 

Discriminant Analysis of Principal Components (DAPC; Yendle and Macfie, 1989) 

performed on genotype data pruned for excess of LD to avoid the strong influence of SNP 

clusters when estimating genetic relatedness (Laurie et al., 2010). Pruning was performed on 

SNPs of known genomic position by snp.pruning() function from R package ASRgenomics 

with a maximum r2 threshold of 0.2, a window size of 50 SNPs, and an overlap of 5 SNPs 

between consecutive windows, generating a set of 5,094 SNPs. For DAPC, the k-means 

clustering algorithm was run iteratively for increasing values of K (i.e., numbers of genetic 

clusters) from 1 to 30, to identify its optimal value according to differences between 

successive values of the Bayesian information criterion. The analysis was performed on the 

output of a principal component analysis (PCA) to benefit from dimensionality reduction but 

keeping all the PCs to avoid information loss. The final DAPC was performed by using the 

optimal K value. The number of PCs to be retained for DAPC, and that of discriminant 

functions to be used as covariates in GWAS models, were determined by visual inspection of 

plots of PC cumulative variance and discriminant function eigenvalues, respectively. Based 

on this operation, 150 PCs were considered for DAPC, and 2 discriminant functions were 

employed as GWAS covariates. The procedure was implemented by using the functions 

find.clusters() and dapc() from R package adegenet (Jombart and Ahmed, 2011). 

LD was estimated as r2 value for pairwise combinations of SNPs within a 100 kb window by 

LD.decay() function from R package sommer (Covarrubias-Pazaran, 2016). The r2 values 

were plotted against physical distance and fitted by a polynomial curve as described in 

Marroni et al. (2011). The 90th percentile of the r2 distribution for pairwise combinations of 

SNPs located on different chromosomes was estimated by setting argument unlinked to true 

in LD.decay() function, to assess the most meaningful LD decay threshold for candidate gene 

research in our dataset. 
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A GWAS was performed for grain yield and protein content averaged across the three test 

environments by the Blink model (Huang et al., 2019) in R package GAPIT3 (Wang and 

Zhang, 2021). To investigate eventual differences in significant SNPs depending on the level 

of winter cold stress, GWAS was conducted also on grain yield data from each of Lodi 2013-

14 and Lodi 2014-15. The examination of quantile-quantile (QQ) plots highlighted an 

appropriate compensation of population structure by the first two DAPC discriminant 

functions for all the datasets (Appendix, Figure 1). A Bonferroni threshold of 5% was 

employed to select significant SNPs. 

 

 

2.3. Results 

2.3.1. Phenotypic variation, genotype × environment interaction, and trait 

interrelationships 

On average, Lodi 2013–14 featured higher grain yield, protein content, and protein yield 

compared to Lodi 2014–15 (Appendix, Table 1), in accordance with the more favourable 

conditions provided by a milder and wetter winter (Appendix, Table 2). Perugia 2013–14 

showed intermediate grain protein content along with the lowest grain and protein yield 

(Appendix, Table 1), which were probably due to strong weed diffusion (Annicchiarico et 

al., 2019). The range of variation for trait values of the 306 RILs averaged across 

environments was 1.79–7.77 t/ha for grain yield, 21.7–26.6% for protein content, and 0.46–

1.95 t/ha for protein yield. Several RILs outperformed the best parent cultivar for grain yield, 

protein content, and protein yield, with nine lines resulting significantly superior to the best 

parent cultivar (Isard) and six overcoming even the elite commercial variety Spacial for 

protein yield. Significant differences in RIL population means occurred for most traits and 

environments (Table 5) with grain and protein yield following a similar pattern, and RIL 

population × environment interaction resulted significant for all traits (p < 0.01; Appendix, 

Table 3). K × I tended to display the best trait value within single environments (Table 5), in 

accordance with the trend towards higher grain yield characterizing Kaspa and Isard, and 

with the higher protein content of Kaspa relative to the other parental lines (Appendix, Table 

4). Significant variation was found for all traits and RIL populations in each environment 

according to CVg, which were much smaller for protein content compared with both grain 
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and protein yield, with the latter two traits displaying similar values (Table 5). The greater 

CVg observed for grain and protein yield of all RIL populations in Lodi 2014–15 were caused 

by a definitely colder winter compared with the other environments (Appendix, Table 2), 

leading to large variation between genotypes for winter survival. Variance component 

assessment in the whole dataset revealed over two-fold larger genetic relative to G × E 

variance for protein content, while opposite results were found for grain and protein yield 

(Appendix, Table 3). For all traits, within-population genetic variation resulted much larger 

than between-population one, whereas G × E was somewhat more affected by RIL population 

× environment than by genotype within population × environment component (Appendix, 

Table 3). Line genetic correlation for grain and protein yield between pairs of environments 

was much lower between different years in Lodi than between different locations during 

2013–14 (Table 6), thereby confirming the greater extent of genotype × year compared with 

genotype × location variance component in the Italian target region. Although statistically 

significant, G × E for protein content did not imply marked inconsistency of genotype 

responses between environments, as revealed by the high genetic correlation values (rg ≥ 

0.73; Table 6). Together with the greater size of genotype relative to G × E variance 

component, a much larger within-trial broad-sense heritability was detected on average for 

protein content (H2 = 0.82) compared with grain and protein yield (H2 = 0.52 and H2 = 0.54, 

respectively). Grain yield and protein content exhibited a slightly positive genetic correlation 

in all environments, which resulted significant at p < 0.05 only in Lodi 2014–15 (Table 6). 

Protein yield was much more affected by grain yield than by protein content, as revealed by 

phenotypic correlation results (Table 6). 
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Table 5. Mean value and genetic coefficient of variation (CVg) of three traits measured in three test 

environments on pea lines from three connected RIL populations (102 lines from A × I, 100 from K × A, and 

104 from K × I). Row means followed by different letters differ at p < 0.05 according to Duncan’s test. CVg 

(computed as SG / m, where SG = square-root of genotype variance and m = trait mean value) resulted always 

significantly different from zero at p < 0.01. 

  

Mean value  CVg (%) 

Trait Environment A x I K x A K x I SE  A x I K x A K x I 

Grain yield (t/ha) Lodi 2013-2014 5.99 a 6.33 a 6.54 a 0.14  10.1 17.5 18.2 

 

Lodi 2014-2015 5.80 a 2.52 b 5.78 a 0.18  28.0 51.3 33.0 

 

Perugia 2013-2014 2.61 b 2.77 b 3.31 a 0.08  24.8 20.7 14.8 

Protein content (%) Lodi 2013-2014 24.72 b 25.55 a 25.69 a 0.1  3.7 3.9 3.3 

 

Lodi 2014-2015 23.23 a,b 23.03 b 23.37 a 0.1  3.9 3.6 3.9 

 

Perugia 2013-2014 23.29 b 24.82 a 24.68 a 0.11  3.9 4.5 3.4 

Protein yield (t/ha) Lodi 2013-2014 1.48 b 1.62 a 1.68 a 0.03  11.1 18.0 18.5 

 

Lodi 2014-2015 1.34 a 0.58 b 1.35 a 0.04  30.6 53.5 34.0 

 

Perugia 2013-2014 0.61 c 0.69 b 0.82 a 0.02  25.6 21.8 14.3 

 

Table 6. A) Genetic correlation of line values across pairs of test environments featuring the same location 

(same loc.) or year for three pea traits. Genetic correlation was always significantly different from zero at p < 

0.01. B) For each environment, genetic correlation between grain yield and protein content (rg) with the relative 

standard error (SE), and phenotypic correlation between protein yield and its component traits (grain yield and 

protein content) were displayed. Genetic correlation was significantly different from zero only in Lodi 2014-15 

(p < 0.05), while phenotypic correlation in all environments (p < 0.01). All the results refer to 306 pea lines 

from three connected RIL populations. 

A) Trait Same loc. Same year B) Environment rg SE Grain yield Protein content 

 Yield (t/ha) 0.35 0.79  Lodi 2013-14 0.12 0.08 0.98 0.30 

 Protein content (%) 0.73 0.92  Lodi 2014-15 0.18 0.07 1.00 0.25 

 Protein yield (t/ha) 0.34 0.80  Perugia 2013-14 0.14 0.08 0.99 0.29 

 

2.3.2. Genomic selection 

GBS produced, on average, 551,210 reads per sample. The number of polymorphic SNPs 

was severely affected by the mpm and mps thresholds applied at filtering. Mpm below 5% 

always implied very few polymorphic SNPs (< 500), so models with mpm and mps in the 

range 5–30% and 10-50%, respectively, were tested, producing from 2,297 to 30,464 

polymorphic SNPs. Slight predictive ability differences were found for these combinations 
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of mpm and mps for all traits, with a trend towards lower protein content predictive ability 

for the threshold combination of mpm = 0.3 and mps = 0.1 in all environments. Thresholds 

of mpm = 0.2 and mps = 0.25 were adopted for the following GS analyses since they ensured 

a good compromise between model predictive ability and number of markers and genotypes 

retained in the dataset with 18,674 polymorphic SNPs and 276 RILs. The four GS models 

performed very similarly in the intra-population inter-environment scenario for all traits, with 

a very slight advantage for grain and protein yield of rrBLUP, which therefore was employed 

for subsequent analyses. The mean predictive ability in this scenario resulted high for protein 

content (rAb = 0.53), and moderately high for grain and protein yield (rAb = 0.40 and rAb = 

0.41, respectively; Table 7). Intra-population inter-environment predictions did not differ 

markedly for the single validation environments (Table 7), although a somewhat lower 

predictive ability was achieved for grain and protein yield in Perugia 2013-14, and for protein 

content in Lodi 2014–15 (Table 7). The inter-population inter-environment scenario implied 

a predictive ability decrease of about 50% for all traits compared to the intra-population inter-

environment scenario, with model training on A × I leading to distinctly inferior predictions 

for grain and protein yield (Table 7). The mean inter-population predictive ability for protein 

content was not only higher, but also less affected by the specific RIL population used for 

GS model training compared with the other two traits (Table 7). 

Table 7. Predictive ability range for the four models (rrBLUP, BayesA, BayesC, Bayesian Lasso) tested in the 

intra-population inter-environment scenario and predictive ability values for each validation environment (Lo 

= Lodi, Pg = Perugia) in the same scenario, or training population in the inter-population inter-environment 

scenario. All the predictive ability values were obtained by rrBLUP, using a ten-fold stratified cross-validation 

scheme with ten repetitions in the intra-population scenario. The results were averaged across validation 

environments in both scenarios, and populations in the inter-population scenario. The genetic base consisted of 

276 genotypes from three connected RIL populations. 

 Intra-population  Inter-population 

Trait Range Lo 2013-14 Lo 2014-15 Pg 2013-14 Mean  A × I K × A K × I Mean 

Grain yield (t/ha) 0.39-0.40 0.39 0.45 0.36 0.40  0.08 0.28 0.27 0.21 

Protein content (%) 0.52-0.53 0.60 0.45 0.53 0.53  0.27 0.21 0.32 0.27 

Protein yield (t/ha) 0.40-0.41 0.40 0.46 0.36 0.41  0.08 0.25 0.27 0.20 

 

2.3.3. Comparison of genomic vs. phenotypic selection 

Based on correlation results, the ability of PS and GS relying on two selection or training 

environments to predict RIL phenotypic data in a third environment resulted similar, with a 
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modest advantage of PS for protein content (0.75 vs. 0.70), and of GS for grain and protein 

yield (0.48 vs. 0.46, and 0.51 vs. 0.49, respectively). GS predicted efficiency relative to PS 

was largely dependent on the assumed GS scenario and duration of one PS cycle, resulting 

over four-fold larger for GS intra-population prediction and a two-year PS cycle, equal for 

GS inter-population scenario and a one-year PS cycle, and over two-fold larger in the other 

cases (Table 8). 

Table 8. Ratio of genomic selection (GS) to phenotypic selection (PS) efficiency for protein yield based on 

predicted genetic gains per unit time for similar evaluation costs assuming two environments for PS and for GS 

model training in intra-population (GSA) or inter-population (GSB) inter-environment scenarios. HC is the square 

root of the broad-sense heritability on a genotype mean basis; rAc is GS predictive accuracy; tP is the duration in 

years of one cycle of PS. Efficiency ratios were averaged across validation environments and RIL populations. 

  GSA/PS efficiency ratio  GSB/PS efficiency ratio 

Trait HC GSArAc tP = 1 tP = 2  GSBrAc tP = 1 tP = 2 

Protein yield (t/ha) 0.676 0.511 2.192 4.383  0.252 1.084 2.167 

 

2.3.4. Genome-wide association study and linkage disequilibrium decay 

Genomic data employed for GWAS and LD analysis were obtained by filtering the original 

dataset according to mpm < 0.2, mps < 0.25, MAF > 0.05, and SNP heterozygosity < 0.3, 

retaining 18,674 polymorphic SNPs and 276 RILs. On average, LD reached r2 = 0.2 at 99,884 

bp, with single chromosome values ranging from 99,685 bp for chromosome 2 to 99,997 bp 

for chromosome 1 (Appendix, Figure 2). The 90th percentile of the r2 distribution for pairwise 

combinations of SNPs located on different chromosomes resulted equal to 0.08 and was 

reached at 99,885 bp on average. Based on these results, a 100 kb genomic region was 

scanned in both directions from each significant SNP to look for candidate genes. 

The DAPC was performed by adopting K = 3, since it resulted as the optimal group number 

in all the iteration rounds, in accordance with the presence of three RIL populations. Grain 

yield and protein content averaged across the three environments displayed several 

significant associations spread across the genome, confirming their expected polygenic 

control. Five significant SNPs mapping on chromosomes 1, 3, 5 and 6 were found for grain 

yield, and ten significant SNPs were identified for protein content, of which nine mapped on 

chromosomes 1, 2, 3, 4 and 5, and one on scaffolds (Figure 15). For grain yield, four 

significant SNPs were detected on chromosomes 2, 3, and 6 in Lodi 2013-14, and eight on 

chromosomes 1, 2, 3, 5, and 6 in Lodi 2014-15, of which two SNPs mapping on chromosomes 

1 and 5 resulted significant also for trait mean across environments. In addition, significant 
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SNPs were detected for grain yield in corresponding genomic regions by GWAS conducted 

on different datasets, namely two SNPs on chromosome 3 for trait mean across environments 

and Lodi 2014-15, and three on chromosome 6, one for each dataset. The list of significant 

SNPs detected for grain yield and protein content for each dataset was provided in Appendix 

Table 5 along with the estimated effect, while a list of the candidate genes relative to the 

analysis performed on mean trait values across environments was reported in Appendix Table 

6. 

Figure 15. Manhattan plots showing the association scores of 18,674 SNPs with two traits averaged across three 

test environments for a GWAS based on Blink model and performed on 276 lines belonging to three connected 

RIL populations. The continuous and dashed lines represent Bonferroni threshold at 1% and 5%, respectively. 

 

 

 

2.4. Discussion 

This study showed that the improvement of pea protein content is less challenging compared 

with that of grain yield, independently from the selection method (PS or GS). The reason is 

a lower influence of G × E for protein content, which simplifies both PS and GS by reducing 

the number of experiments needed to get reliable data for selection or model training. 

Moreover, the absence of a strong genetic correlation between grain yield and protein content 

is encouraging for their simultaneous improvement, as confirmed by the presence of different 

genomic regions controlling these traits in the GWAS. This result is in accordance with 
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phenotypic correlation values reported by some earlier studies (Cousin et al., 1985; Klein et 

al., 2020; Bărbieru, 2021), but not by others (Tar’an et al., 2004; Krajewski et al., 2011). The 

5% phenotypic variation detected for grain protein content falls in the range of what reported 

for breeding material (Cousin et al., 1985; Tar’an et al., 2004; Burstin et al., 2007; Jha et al., 

2015), while being lower than that found by Ferrari et al. (2016) for the same genetic base, 

probably due to single-environment evaluation in the latter study. The much higher genetic 

variation found within compared to between RIL populations for all the target traits, 

according to variance component estimates, emphasized the importance of within-population 

selection. Protein yield was predominantly affected by grain yield and far less by protein 

content according to phenotypic correlation results, as confirmed by the very similar genetic 

variation, variance components, and genomic prediction results obtained for the first two 

traits. The greater size of genotype × year compared with genotype × location interaction that 

emerged for all traits, likely due to variation in winter cold stress severity (Annicchiarico et 

al., 2019) agreed with grain yield results based on larger environment samples (Annicchiarico 

and Iannucci, 2008; Pecetti et al., 2019), supporting selection for wide adaptation in the target 

region.  

The slight differences in predictive ability found between statistical models for all traits in 

the intra-population inter-environment scenario were in accordance with the results reported 

in earlier pea studies for genomic prediction of grain yield or other traits (Burstin et al., 2015; 

Annicchiarico et al., 2017a, 2019). Major findings of this study were the high (rAb = 0.53) 

and moderately high (rAb = 0.41) GS predictive ability values in the intra-population inter-

environment scenario obtained for protein content and protein yield, respectively, with a 

limited influence of the specific training environments. The higher predictive ability found 

for grain yield relative to Annicchiarico et al. (2019) was likely due to the greater number of 

GS training environments employed by the current study (two vs. one), without excluding 

the effect of SNP calling based on pea sequenced genome instead of mock genome. The 

greater GS predictive ability detected for protein content compared with grain or protein yield 

is likely due to its higher within-trial broad-sense heritability and lower influence of G × E. 

The decrease of GS predictive ability passing from the intra-population to the inter-

population scenario approached 50% for all traits, but its value varied remarkably for grain 

and protein yield depending on the RIL population used for model training. Indeed, the use 

of A × I as a training set implied a lower predictive ability for these traits compared with the 

other two populations, in accordance with what reported for the same materials for grain yield 

under severe drought and onset of flowering (Annicchiarico et al., 2017a). This may be due 
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to a lower number of polymorphic markers characterizing A × I, whose parents are both of 

European origin and showed the highest genetic similarity according to Nei’s (1972) genetic 

distance compared with the other pairs of parental lines (Annicchiarico et al., 2019).  

The observed LD decay was much faster than that reported by Alemu et al. (2022) for a 

collection of 188 vining pea varieties and breeding lines provided by a single company (where 

r2 = 0.2 was reached at 6,930,000 bp on average vs. about 100,000 bp in our study), while 

being considerably slower compared to the findings of Pavan et al. (2022) and Crosta et al. 

(2023) for two worldwide germplasm collections (r2 = 0.2 was reached at 30 bp and 1,445 bp 

on average, respectively). These results are in line with the expectations, considering that the 

first genetic base was likely narrower, while the other two considerably wider and resulting 

from a much higher number of meiotic events relative to the current population. However, 

the only study using our same LD decay fitting method was that by Crosta et al. (2023), while 

different methods were employed in the other works, with a possible effect on the results. 

GWAS results confirmed the polygenic control of grain yield and protein content by 

highlighting many significant markers spread across the genome for trait mean data across 

environments, thereby supporting the interest of developing GS models for both traits and 

their combination. QTLs for grain yield were detected in the same genomic regions of our 

significant SNPs on chromosome 1 (Gali et al., 2019), 5 (Klein et al., 2014; Gali et al., 2018), 

and 6 (Klein et al., 2020; Crosta et al., 2023), and for protein content on chromosome 2 (Gali 

et al., 2018), 3 (Gali et al., 2019), 4 (Klein et al., 2014), and 5 (Klein et al., 2014; Gali et al., 

2018; Gali et al., 2019; Klein et al., 2020). Many candidate genes of possible interest emerged 

for both grain yield and protein content. For instance, for the first trait, Psat1g096760 encodes 

a phosphatidylethanolamine-binding protein that can be involved in flowering control in 

response to the environmental conditions (Książkiewicz et al., 2016), while Psat3g051840, 

Psat3g051880, and Psat5g289760 code for transcription factors whose families (RING for 

the first two and BZIP for the last one) play a role both in plant growth and abiotic stress 

response (Dröge-Laser et al., 2018; Han et al., 2022). Moreover, Psat5g289640 encodes an 

electron transfer flavoprotein that regulates the flux to the mitochondrial transport chain 

under carbohydrate-limiting conditions (Brito et al., 2022). For protein content, 

Psat5g132320 may participate in plant symbiosis with Rhizobia, since it encodes a lysin motif 

domain that is known to play a key role in plant-microbe interaction (Gust et al., 2012), while 

Psat2g022320 codes for an ethylene insensitive 3 protein, which is involved in leaf 

senescence and nitrogen metabolism in wheat (Sultana et al., 2021). The predominant 

influence on grain yield mean data across experiments of Lodi 2014-15, namely the 
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environment featuring the strongest winter cold stress, resulted evident from the fact that all 

the significant SNPs detected for trait mean, except for one on chromosome 6, were either 

significant or close to significant SNPs in this environment. Moreover, our hypothesis of a 

different genetic control of grain yield depending on the intensity of winter cold stress was 

confirmed by the differences in significant SNPs and relative genomic regions found between 

Lodi 2013-14 and Lodi 2014-15. 

This study provided an unprecedented comparison of GS vs. PS in terms of predicted 

efficiency for protein yield improvement in pea. Its results indicated an advantage of intra-

population GS over all PS scenarios, and of inter-population GS on PS relying on two-year 

data, which represents the most realistic scenario due to the sizeable genotype × year 

interaction detected for grain yield. A crucial confirmation of the advantage of GS over PS 

for pea protein yield improvement will be provided by future research work comparing these 

selection methods in terms of actual genetic gains. 

Note: the work presented in this chapter was mentioned in the other sections by referring to the relative 

publication (Crosta et al., 2022). 
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3. Genomic prediction and allele mining for the improvement of grain yield and 

protein content in a pea germplasm collection 

3.1. Objectives 

The objectives of the current work are: (1) testing the ability of GS models developed on a 

germplasm collection to predict grain yield and protein content both in germplasm accessions 

and breeding material, as represented by three connected RIL populations that were evaluated 

in three independent Italian environments in earlier studies (Annicchiarico et al., 2019; Crosta 

et al., 2022); (2) performing a GWAS for seed protein content and grain yield under severe 

terminal drought to identify eventual QTLs for these traits; (3) investigating the genetic 

relationship between grain yield and protein content and the phenotypic correlation between 

protein yield and each of its component traits in a highly diversified genetic base. 

 

 

3.2. Materials and methods 

3.2.1. Plant material and phenotyping 

The study was based on 220 cultivated pea landraces and old cultivars belonging to 19 

regional germplasm pools and 11 modern cultivars bred in France (Attika, Cartuce, Dove, 

Enduro, Genial, Isard, Messire, Spirale), Spain (Cigarron, Viriato) or Germany (Santana) 

(Appendix Table 7). This collection was set up by pooling selected accessions that were 

provided by IPK (Gatersleben), INRAE UMRLEG (Dijon), John Innes Centre (Norwich), 

CNR-IGV (Bari) and ICARDA’s gene bank. These institutions were asked to provide 

accessions which, according to the available knowledge, were able to maximize the genetic 

diversity within the gene pool of each country that was addressed by our request. A previous 

study (Pavan et al., 2022) confirmed the wide genetic variation and the absence of duplicates 

among the accessions included in this collection. This material was evaluated by 

Annicchiarico et al. (2017b) in Lodi, northern Italy (45°19’N, 9°03’E), in a spring-sown rain-

fed field experiment designed as a randomized complete block with two replicates. This 

experiment was characterized by substantial terminal drought, as provided by a rainfall 

amount of 178 mm over the crop cycle. Grain yield and protein content were determined on 

a plot basis and NIRS method was employed for protein content measurement based on the 
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same calibration and models described in paragraph 2.2.2. Further details about the 

experiment can be found in Annicchiarico et al. (2017b). The three RIL populations 

employed for GS model validation were issued by connected crosses between three parent 

cultivars (Attika and Isard, of European origin, and Kaspa, bred in Australia) that featured 

high and stable grain yield across Italian environments in earlier variety testing 

(Annicchiarico, 2005; Annicchiarico and Iannucci, 2008). This set included 306 lines that 

were evaluated for grain yield by Annicchiarico et al. (2019), and for protein content by 

Crosta et al. (2022) in three environments of northern or central Italy. These environments 

differed from that of germplasm collection evaluation in various respects: they were autumn-

sown, which implied substantial winter cold stress (particularly in one environment), more 

favourable in terms of water availability (featuring at least 500 mm rainfall over the crop 

cycle) and managed organically. Further details about these experiments can be found in the 

relative studies (Annicchiarico et al., 2019; Crosta et al., 2022) or in Chapter 2. 

 

3.2.2. Statistical analysis of phenotypic data and trait interrelationships 

Broad-sense heritability was estimated by the formula presented in paragraph 2.2.3. A linear 

mixed model was applied on ecotypes with germplasm pool and accession within pool as 

random factors, to assess the significance and relative size of between and within pool 

variance components estimated by REML method (Annicchiarico et al., 2017b). Phenotypic 

correlation between protein yield and each of its two components was estimated, and the 

genetic correlation between grain yield and protein content was computed according to 

Piepho (2018) by using the freeware implementation in R proposed by Onofri (2019).  

 

3.2.3. Genotyping and genomic data processing 

For DNA extraction, one plant per accession was selected that was morphologically 

representative based on visual evaluation. Information on DNA isolation and GBS can be 

found in Pavan et al. (2022) for the 231 accessions of the germplasm collection, and in 

Annicchiarico et al. (2019) for lines belonging to the three connected RIL populations. GBS 

was performed according to the protocol of Elshire et al. (2011) modified by using the ApeKI 

restriction enzyme and KAPA Taq polymerase. The raw reads of accessions from the 

germplasm collection were pre-processed by Trimmomatic Version 0.39 (Bolger et al., 

2014), aligned against pea reference genome v1a (Kreplak et al., 2019) by Burrows-Wheeler 
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Aligner (Li and Durbin, 2009), and subjected to quality control and SNP calling according to 

the dDocent pipeline (Puritz et al., 2014). Monomorphic markers were eliminated from the 

resulting dataset, which was filtered by MAF > 5%, mpm < 20%, SNP heterozygosity rate < 

30%, and mps < 25%, retaining a total of 223 accessions and 41,114 SNPs. Information about 

demultiplexing, alignment to the reference genome, and quality filtering can be found in 

paragraph 2.2.4. for the three connected RIL populations used for validation. RIL genomic 

data were merged with molecular data from the germplasm collection retaining only 

polymorphic SNPs. The resulting dataset was filtered by MAF > 5%, mpm < 20%, SNP 

heterozygosity rate < 30%, and mps < 25%, retaining a total of 276 RILs and 4,929 SNPs in 

common with the germplasm collection. Missing data were estimated by the k nearest 

neighbour imputation method (Andridge and Little, 2010). 

 

3.2.4. Genomic selection 

Three GS models were tested in two scenarios for each of grain yield and protein content, 

namely rrBLUP (Meuwissen et al., 2001), BayesC (Habier et al., 2011), and Bayesian Lasso 

(Park and Casella, 2008), by the R package GROAN (Nazzicari and Biscarini, 2017). The 

first scenario was based on 41,114 SNPs and consisted in a ten-fold non-stratified cross-

validation performed on germplasm collection data with fifty repetitions for rrBLUP and ten 

for Bayesian models, whose results were averaged to get a unique predictive ability value. 

The second scenario envisaged an inter-population inter-environment validation of GS 

models developed on the germplasm collection on both separated and pooled data of the three 

connected RIL populations. In this case, GS models included only 4,929 SNPs and 

phenotypic data of the validation set were averaged across the three evaluation environments. 

Filtering retained 77 lines and 4,784 polymorphic SNPs for population A × I, 96 lines and 

4,846 polymorphic SNPs for K × A, and 103 lines and 4,922 polymorphic SNPs for K × I. 

Moreover, the number of polymorphic SNPs among those featuring the highest 100, 300, or 

1,000 effects in absolute value according to GS models for grain yield and protein content, 

was computed for each RIL population in the validation set to investigate its relationship with 

the within-population predictive ability. The choice of considering a maximum of 1,000 SNPs 

was due to most plants or livestock breeding simulations assuming 1,000 or less QTLs for 

polygenic traits (Brito et al. 2011; Yin et al. 2014; Wientjes et al. 2015; Yao et al. 2018; 

Strandén et al. 2019; Peters et al. 2020). 
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3.2.5. Genome-wide association study and linkage disequilibrium decay 

Population structure information to be included in the GWAS models was obtained by a 

DAPC (Yendle and MacFie, 1989) performed on genotype data pruned for excess of LD to 

avoid the strong influence of SNP clusters when estimating genetic relatedness (Laurie et al., 

2010). The snp.pruning() function from R package ASRgenomics was employed on SNPs of 

known genomic position with a maximum r2 threshold of 0.2, a window size of 50 SNPs, and 

an overlap of 5 SNPs between consecutive windows, generating a set of 11,072 SNPs. The 

k-means clustering algorithm was run iteratively for increasing values of K (i.e., cluster 

number) from 1 to 30, to identify its optimal value according to differences between 

successive values of the Bayesian information criterion. The analysis was performed on the 

output of a PCA to benefit from dimensionality reduction but keeping all the PCs to avoid 

information loss. The final DAPC was performed by using the optimal K value. The number 

of PCs to be retained for DAPC, and that of discriminant functions to be used as covariates 

in the GWAS models, were determined by visual inspection of plots of PC cumulative 

variance and discriminant function eigenvalues, respectively. Based on this operation, 150 

PCs were considered for DAPC, and 8 discriminant functions were employed as GWAS 

covariates. The whole procedure was implemented by using the functions find.clusters() and 

dapc() from R package adegenet (Jombart and Ahmed, 2011). LD was estimated as r2 value 

for pairwise combinations of SNPs within a 100 kb window by LD.decay() function from R 

package sommer (Covarrubias-Pazaran, 2016). The r2 values were plotted against physical 

distance and fitted by a polynomial curve as described in Marroni et al. (2011). The 90th 

percentile of the r2 distribution for pairwise combinations of SNPs located on different 

chromosomes was estimated by setting argument unlinked to true in LD.decay() function, to 

assess the most meaningful LD decay threshold for candidate gene research in our dataset. A 

GWAS was performed on 41,114 polymorphic SNPs according to the Blink model (Huang 

et al., 2019) by the R package GAPIT3 (Wang and Zhang, 2021). Visual examination of QQ 

plots highlighted an appropriate compensation of population structure by DAPC discriminant 

functions (Appendix Figure 3). A Bonferroni threshold of 5% was employed to select 

significant SNPs. 
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3.3. Results 

3.3.1. Phenotypic variation and trait interrelationships 

Phenotypic variation within all the regional pools resulted significant at p < 0.01 for both 

grain yield and protein content in Annicchiarico et al. (2017b), to which we refer for further 

details about the variability within and between pools. The high impact of terminal drought 

was confirmed by a low mean grain yield (about 1.1 t/ha), with modern cultivars displaying 

lower grain yield, despite an earlier flowering, and a similar protein content compared with 

the traditional germplasm (Table 9). The range of phenotypic variation for both target traits 

was remarkably larger for the landraces and old cultivars compared with the improved 

varieties (Table 9). Grain yield and protein content featured modest and moderately high 

broad-sense heritability, respectively (Table 9), while no significant genetic correlation 

emerged between these two traits. Finally, phenotypic correlation results highlighted a 

predominant influence of grain yield compared with protein content on protein yield 

determination (r = 0.99 with p < 0.001 vs. r = 0.15 with p = 0.03, respectively).  

Table 9. Mean, variation range, and broad-sense heritability estimated on a genotype mean basis for three pea 

traits measured on a worldwide germplasm collection of 220 landraces from 19 regional pools and 11 improved 

varieties. 

 Landraces  Improved varieties  

Trait Mean Range  Mean Range H2 

Grain yield (t/ha) 1.11 0.16-3.30  0.85 0.31-2.03 0.47 

Protein content (%) 22.8 17.5-27.28  22.8 20.4-23.2 0.68 

Onset of flowering (days from 1/1) 133 113-154  131 127-136 0.87 

 

3.3.2. Genomic selection 

The GS models trained and validated on the germplasm collection displayed moderately high 

predictive ability for both grain yield and protein content (rAb = 0.435 and 0.549 for the best 

model, respectively), mostly with slight differences between statistical models (Table 10). As 

expected, the inter-population inter-environment GS scenario produced a substantial decrease 

in predictive ability, whose extent varied largely with RIL population. For both traits, K × I 

showed the highest predictive ability, which for grain yield was almost equal to that of the 

intra-population scenario, while for protein content resulted about one third of it. On the other 

hand, K × A and A × I displayed intermediate and zero predictive ability for grain yield, while 

both showed null predictive ability for protein content (Table 11). When pooled lines of the 

three RIL populations were used as the validation set, predictive ability dropped by about 
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50% compared with the intra-population scenario for protein content (0.281 vs. 0.549 

considering top-performing models), while it reached zero for grain yield (Table 11). The 

number of top-effect polymorphic SNPs for protein content was very similar in the three RIL 

populations, independently from the number of SNPs considered, although K × I and A × I 

tended to display the highest and lowest number, respectively, in the 300 and 1,000 SNP 

scenarios (Figure 16). The same trend characterized grain yield data, with the difference 

between A × I and the other two populations becoming quite evident in the 1,000 SNP 

scenario (Figure 16). 

Table 10. GS predictive ability in an intra-population intra-environment scenario based on a ten-fold non-

stratified cross-validation for two quantitative traits and three models relying on 41,114 SNPs and 223 

accessions represented by 212 landraces from 19 regional pools and 11 modern cultivars from a worldwide pea 

germplasm collection. 

Trait rrBLUP BayesLasso BayesC 

Grain yield 0.435 0.431 0.426 

Protein content 0.549 0.540 0.539 

 

Table 11. Phenotypic variation range in the validation set for two pea traits and predictive ability values based 

on three GS models trained on 212 landraces from 19 regional pools and 11 modern cultivars from a worldwide 

germplasm collection characterized in a single environment and validated on 276 RILs from three connected 

populations characterized in three environments. 

   Predictive ability 

Trait Validation set Range rrBLUP BayesLasso BayesC 

Grain yield (t/ha) RILs A × I 2.79 - 6.79 −0.236 -0.237 -0.246 

Grain yield (t/ha) RILs K × A 2.09 - 6.05 0.270 0.258 0.264 

Grain yield (t/ha) RILs K × I 3.08 - 7.60 0.446 0.439 0.443 

Grain yield (t/ha) All RILs 2.79 - 7.60 −0.025 -0.038 -0.022 

Protein content (%) RILs A × I 21. 7 - 25.8 -0.225 -0.240 -0.190 

Protein content (%) RILs K × A 22.0 - 26.6 0.028 0.024 -0.013 

Protein content (%) RILs K × I 22.5 - 26.4 0.184 0.185 0.157 

Protein content (%) All RILs 21.7 - 26.7 0.281 0.263 0.255 
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Figure 16. Number of polymorphic SNPs among the 100, 300, or 1,000 featuring the highest effect in absolute 

value according to GS models for pea grain yield and protein content displayed separately for the three RIL 

populations in the validation set (A × I, K × A, K × I), which was formed by 276 lines. GS model training was 

performed on 212 landraces from 19 regional pools and 11 modern cultivars from a worldwide germplasm 

collection. 

 

 

3.3.3. Genome-wide association study and linkage disequilibrium decay 

On average, LD reached half of its 90th percentile (r2 = 0.38) at 217 bp, with single 

chromosome values ranging from 146 bp for chromosome 2 to 326 bp for chromosome 4 

(Appendix Figure 4). The 90th percentile of the r2 distribution for pairwise combinations of 

SNPs located on different chromosomes resulted equal to 0.05 and was reached at 10,140 bp 

on average (Appendix Figure 4). The mean distance at which r2 dropped to 0.05 on a specific 

chromosome was scanned in both directions from each significant SNP on that chromosome 

to look for candidate genes. The DAPC was performed by adopting K = 16 as the optimal 

cluster number. The list of significant SNPs detected for grain yield and protein content is 

provided in Appendix Table 8 along with additional information about their estimated effect, 

while a list of the relative candidate genes is reported in Appendix Table 9. Both protein 

content and grain yield under severe terminal drought displayed significant associations. Four 

significant SNPs mapping on chromosomes 1, 4, 6 and 7 were found for grain yield, and one 

significant SNP was detected for protein content on chromosome 5 (Figure 17). 
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Figure 17. Manhattan plots showing the association scores of 41,114 SNPs with two traits along pea 

chromosomes for a GWAS based on Blink model and performed on 212 landraces from 19 regional pools and 

11 modern cultivars from a worldwide germplasm collection. The green line represents Bonferroni threshold at 

5%. 

 

 

 

3.4. Discussion 

The predominant role of grain yield compared with protein content in protein yield 

determination, and the absence of significant genetic correlation between grain yield and 

protein content reported by Crosta et al. (2022) for breeding material were confirmed in our 

diversified germplasm collection in the presence of substantial terminal drought. This 

emphasized the importance of improving grain yield to enhance protein yield, while 

encouraging simultaneous breeding for higher grain yield and protein content. 

Intra-population, intra-environment predictive ability values of 0.43 for grain yield, which 

was nearly identical to that reported for the USDA pea collection (Al Bari et al., 2021), and 

of 0.55 for protein content support the use of GS models to select superior genotypes for these 

traits in germplasm collections. The application of GS models trained on the germplasm 

collection to predict breeding values of lines from the three RIL populations was challenged 

by the much lower genetic diversity of the validation set compared with the training set, the 

limited SNP number (4,929), and the large differences in evaluation environments for sowing 

time (spring vs. autumn) and drought stress extent (severe vs. limited). In this context, the 

null predictive ability that emerged for grain yield, when using the pooled lines of the three 
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RIL populations for validation, was not surprising. The same applies to protein content, for 

which the 50% predictive ability loss compared with the intra-population scenario was even 

lower than expected, considering that a comparable decrease was observed for inter-

population inter-environment predictions relative to RIL populations having one parent in 

common and evaluated in similar test environments (Crosta et al., 2022). As regards the 

variation in predictive ability between RIL populations, the fact that the extent of phenotypic 

variation within populations was similar for both traits (Table 11), suggests that other factors 

may account for these differences. For both grain yield and protein content, K × I, K × A and 

A × I featured decreasing predictive ability values, in accordance with the declining number 

of polymorphic markers found for these populations, either considering the whole SNP set or 

the SNPs with the highest 300 or 1,000 effects, with K × I showing a surprisingly high 

predictive ability for grain yield (0.446). The large predictive ability differences observed 

between populations for grain yield may suggest the importance of all or most polymorphic 

SNPs for the prediction of this trait, considering the small differences detected in the number 

of polymorphic markers even in the 1,000 SNP scenario for populations showing very 

different predictive ability values (e.g., K × A and K × I). Indeed, the total number of markers 

included in the model was largely inferior compared to the minimum estimated based on LD 

decay in the training set (4,929 vs. about 37,300), which means that populations with more 

polymorphic markers probably benefited from tracking a higher QTL number. Moreover, it 

should be considered that the effect of the tracked QTLs can vary depending on the specific 

validation population, further contributing to predictive ability differences between 

populations. Ultimately, for protein content, the inter-population GS model can still represent 

an interesting option to perform predictions on pooled breeding lines in the absence of models 

trained on closer genetic bases, while for grain yield its interest was limited to specific RIL 

populations. In this sense, in presence of a suboptimal marker number, investigating the 

number of polymorphic SNPs on the whole marker set or on a moderately large subset of top-

effect markers in each test population may provide useful information about the potential of 

GS models trained on a different genetic base to predict grain yield and, to a lower extent, 

protein content breeding values.  

The observed LD decay was much faster than that reported by Alemu et al. (2022) for a 

collection of 188 vining pea varieties and breeding lines from a single company, and by 

Crosta et al. (2022) for three connected RIL populations (r2 = 0.2 was reached on average at 

6,930,000 bp and about 100,000 bp, respectively, vs. 1,445 bp in our study), while being 

slower compared to the findings of Pavan et al. (2022) for a larger germplasm collection 
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(where r2 = 0.2 was reached at 30 bp on average). These results are in line with the 

expectations, considering that the first two genetic bases were likely much narrower and 

underwent a considerably lower number of meiotic events, while the last one was probably 

wider relative to our germplasm collection. However, the only study using our same LD 

decay fitting method was that by Crosta et al. (2022), while other methods were employed in 

the other works, which may have affected the results. Despite the somewhat suboptimal 

sample size, the GWAS was able to detect significant associations for both grain yield and 

protein content, which, if validated by further studies, may be exploited for breeding 

purposes. Klein et al. (2020) identified significant QTLs for protein content in the same 

genomic region of chromosome 5 in which we found the only significant SNP for this trait. 

Significant loci for grain yield were detected in the same genomic regions of our significant 

SNPs by Gali et al. (2018; 2019) on chromosome 1 and by Crosta et al. (2022) on 

chromosome 6. The very fast LD decay possibly led to an underestimation of the number of 

significant SNPs due to the relatively low marker density, but at the same time it ensured an 

almost single gene resolution, which helped in the identification of candidate genes. 

Candidate genes of possible interest emerged for grain yield encoding proteins with 

regulatory functions (Psat1g031400, Psat4g098400, and Psat6g064800 coding for a protein 

kinase domain, a RNA recognition motif, and a helix-loop-helix DNA-binding domain, 

respectively) and a no apical meristem protein (Psat7g111400) that affects the position of 

meristems and primordia in other species (Souer et al., 1996; Sablowski and Meyerowitz, 

1998), while the only candidate gene for protein content (Psat5g246720) codes for a protein 

from the rhomboid family. 

In conclusion, our study produced GS models sufficiently accurate to enable the screening of 

germplasm resources for grain yield and protein content, with a potential interest also for the 

application to specific breeding materials. In addition, information about genomic areas 

involved in the control of the two traits was generated and, if confirmed by further studies, 

can be used in the selection process. 

Note: the work presented in this chapter was mentioned in the other sections by referring to the relative 

publication (Crosta et al., 2023). 
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4. Genomic selection for pea grain yield, protein content, and protein yield: 

predictive ability in independent Italian environments for target and non-

target genetic bases 

4.1. Objectives 

The main objective of this work was the investigation of GS predictive ability for pea grain 

yield, protein content, and protein yield in different environments, and on both the same and 

a different genetic base compared with those employed for model training. 

 

 

4.2. Materials and methods 

4.2.1. Plant material and phenotyping 

GS model training set consisted of 276 RILs, of which 77 were issued from cross A × I, 96 

from K × A, and 103 from K × I according to previous definitions, characterized in three 

autumn-sown environments of northern and central Italy (Lodi 2013-14, Lodi 2014-15, and 

Perugia 2013-14) for grain yield (Annicchiarico et al., 2019) and protein content (Crosta et 

al., 2022). Further details about the experimental setting, materials, environmental 

conditions, and phenotyping procedures can be found in these reports. GS model validation 

set relied on 131 RILs, which were randomly sorted from six populations and evaluated in 

Lodi (northern Italy) during the cropping seasons 2018-19 and 2019-20 (Picture 2). 19 RILs 

belonged to A × I, 23 to K × A, and 22 to K × I, while the other lines originated from three 

additional connected crosses, i.e., 23 from each of Dove × Attika (D × A) and Attika × Guifilo 

(A × G), and 21 from Alliance × Isard (C × I). All the parent lines were selected from a larger 

group of international cultivars because of high and stable grain yield, and moderate 

phenological differences between environments of northern and southern Italy 

(Annicchiarico, 2005; Annicchiarico and Iannucci, 2008). The large use of Attika as a parent 

in these crosses was due to its elevated competitive ability against weeds (Annicchiarico and 

Filippi, 2007), which is often advantageous under organic management. An autumn sowing 

(October 25) was adopted in cropping season 2018-19, while a winter sowing (December 10) 

was employed in 2019-20. The first validation cropping season, compared with the second 

one, featured greater winter cold stress and more rainfall, especially during late spring 
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(Appendix Table 11). Further details about the experimental setting and grain yield 

measurement can be found in Annicchiarico et al. (2021), while grain protein content was 

measured by NIRS method based on the calibration and models described in paragraph 2.2.2., 

and protein yield was obtained by multiplying grain yield by protein content plot values. 

Picture 2. Validation field trial. 

 

 

4.2.2. Heritability estimate 

Broad-sense heritability for grain yield across validation trials was computed from variance 

components relative to genotype (𝑺𝑮
𝟐), genotype × year interaction (𝑺𝑮𝒀

𝟐 ), and experimental 

error (𝑺𝒆
𝟐) estimated by REML method, according to the formula: H2 = 𝑺𝑮

𝟐  / (𝑺𝑮
𝟐  + 𝑺𝑮𝒀

𝟐  / y + 𝑺𝒆
𝟐 

/ y n), where y represents the number of cropping seasons, and n that of replicates in each 

experiment. Since protein content was measured on pooled replicate samples of each 

genotype in each experiment, it was not possible to compute broad-sense heritability for this 

trait and protein yield. 

 

4.2.3. Genotyping and genomic data processing 

For the GS training set, detailed information about DNA isolation, GBS, and quality filtering 

can be found in Annicchiarico et al. (2017a) or in paragraph 2.2.4. The genotype dataset was 

filtered by MAF > 5%, mpm < 20%, mps < 25%, and SNP heterozygosity < 30%. For the GS 

validation set, GBS data were generated by the Elshire Group Ltd. according to the protocol 

established by Elshire et al. (2011) with some modifications, as described by Annicchiarico 

et al. (2021). Library sequencing was performed by using the Illumina HiSeq X platform and 

paired-end runs (2 × 150 bp). The SNP calling was performed according to the dDocent 

pipeline (Puritz et al., 2014), by aligning reads with pea reference genome (Kreplak et al., 
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2019) v1a. The resulting vcf file was filtered for quality using vcftools (Danecek et al., 2011) 

with options -remove-indel, -minQ 30, -non-ref-af 0.00, -max-non-ref-af 0.999, and -max-

missing 0.3, transformed in a 012 SNP matrix, and further filtered for MAF > 5%, mpm < 

10%, mps < 25%, and SNP heterozygosity < 30%. Missing data were imputed according to 

k-nearest neighbours imputation method (Batista and Monard, 2002). 

 

4.2.4. Genomic selection 

GS models for grain yield, protein content, and protein yield were based on rrBLUP and 

5,537 SNPs. Training was performed on phenotypic data of 276 RILs averaged across the 

three evaluation environments. Validation relied on 131 RILs not included in the training set, 

of which 64 originated from the same (hereafter named as target, and represented by lines 

from crossings A × I, K × A, and K × I) and 67 from a different (hereafter named as non-

target, and represented by lines from crossings D × A, A × G, and C × I) genetic base 

compared with that used for training, and was performed both on data from the single 

evaluation environments and their mean. The filtering procedure retained 3,460 polymorphic 

SNPs for A × I, 4,740 for K × A, 4,487 for K × I, 2,981 for D × A, 3,217 for A × G, and 3,848 

for C × I. Predictive ability was estimated for both the single RIL populations and the pooled 

lines of all the populations within the target and non-target genetic bases. Moreover, the 

number of polymorphic SNPs among those featuring the highest 100, 300, or 1,000 effects 

in absolute value according to GS models for grain yield and protein content was computed 

for each RIL population in the validation set to investigate its relationship with the within-

population predictive ability. The choice of considering a maximum of 1,000 SNPs was due 

to most plants or livestock breeding simulations assuming 1,000 or less QTLs for polygenic 

traits (Brito et al. 2011; Yin et al. 2014; Wientjes et al. 2015; Yao et al. 2018; Strandén et al. 

2019; Peters et al. 2020). 

 

 

4.3. Results 

4.3.1. Genomic selection 

GS models validated on the same genetic base used for training displayed moderately high 

predictive ability values for all traits and estimation methods (within or across RIL 

populations), with a higher predictive performance observed for protein content (Table 12). 
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The use of data from different validation environments or their mean displayed an impact of 

variable size and direction on predictions, depending on the trait and predictive ability 

estimation method considered (Table 12). For the non-target genetic base, predictive ability 

was basically null for grain and protein yield independently from the estimation method, 

while resulting intermediate and modest for protein content according to within and across 

RIL population estimates, respectively (Table 12). Substantial predictive ability differences 

were detected between RIL populations of both genetic bases for most traits and validation 

datasets. K × I always showed by far the highest predictive ability for grain and protein yield 

in the target genetic base, while displaying similar results compared with A × I for protein 

content, whereas predictions for K × A resulted null for all traits (Table 13). For the non-

target genetic base, C × I most often showed the highest predictive ability for grain and 

protein yield, despite usually modest, while the predictive performance for the other two RIL 

populations was low or null. For protein content, the predictive ability detected for each 

population tended to vary largely with the validation dataset (Table 13). For grain yield, the 

population ranking for the number of polymorphic SNPs remained quite constant across the 

three scenarios, with the differences between populations increasing with the number of top 

SNPs considered (Figure 18). Moreover, a trend towards a higher number of polymorphic 

SNPs in RIL populations belonging to the target genetic base was observed (Figure 18). On 

the other hand, for protein content the population ranking for the number of polymorphic 

SNPs was largely influenced by the number of top-effect SNPs considered (Figure 18). 

Table 12. Within and across RIL population predictive ability values for three pea traits obtained by rrBLUP 

GS models trained on 276 lines from three RIL populations issued by connected crosses and relying on 5,537 

SNPs. Validation was performed on data of 131 lines from the same (target GB) or a different (non-target GB) 

genetic base compared with that used for training from two evaluation environments or their mean. Within RIL 

population predictive ability was computed by averaging the results across RIL populations forming each 

genetic base. Broad-sense heritability was reported only for grain yield because protein content was measured 

on pooled replicate material of each genotype in each environment.  

  Predictive ability  

  Within-RIL  Across-RIL  

Trait Season Target GB Non-target GB  Target GB Non-target GB H2 

Grain yield 2018-19 0.256 0.113  0.355 -0.087 0.70 

Grain yield 2019-20 0.258 0.011  0.444 -0.100 0.72 

Grain yield mean 0.292 0.079  0.399 -0.110  

Protein content 2018-19 0.313 0.372  0.390 0.295  

Protein content 2019-20 0.425 0.314  0.449 0.117  

Protein content mean 0.403 0.360  0.419 0.229  

Protein yield 2018-19 0.245 0.085  0.308 -0.155  

Protein yield 2019-20 0.267 -0.089  0.447 -0.269  

Protein yield mean 0.279 0.003  0.378 -0.256  
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Table 13. Predictive ability values for three pea traits displayed for each RIL population and obtained by 

rrBLUP GS models trained on 276 lines from three connected RIL populations and relying on 5,537 SNPs. 

Validation was performed on data of 131 independent lines from the same (target GB) or a different (non-target 

GB) genetic base compared with that used for training from two evaluation environments or their mean.  

  
Predictive ability 

  Target genetic base  Non-target genetic base 

Trait Season AI KA KI  AG CI DA 

Grain yield 2018-19 0.368 -0.111 0.510  0.147 0.256 -0.063 

Grain yield 2019-20 0.303 -0.142 0.613  0.047 0.136 -0.149 

Grain yield mean 0.407 -0.135 0.603  0.104 0.233 -0.100 

Protein content 2018-19 0.575 -0.128 0.492  0.721 0.195 0.202 

Protein content 2019-20 0.636 -0.075 0.714  0.288 0.331 0.322 

Protein content mean 0.708 -0.138 0.639  0.663 0.030 0.385 

Protein yield 2018-19 0.387 -0.170 0.518  0.111 0.237 -0.094 

Protein yield 2019-20 0.319 -0.181 0.662  0.030 -0.111 -0.186 

Protein yield mean 0.412 -0.191 0.616  0.074 0.101 -0.167 

 

Figure 18. Number of polymorphic SNPs among the 100, 300, or 1,000 featuring the highest effect in absolute 

value according to GS models for grain yield and protein content displayed separately for the six RIL 

populations in the validation set (A × I, K × A, K × I, D × A, A × G, and C × I), which was formed by 131 lines. 

GS model training was performed on 276 lines from RIL populations A × I, K × A, and K × I. 

 

 

 

4.4. Discussion 

Despite moderately good, within RIL population predictive ability values for the target 

genetic base were inferior to those reported by Crosta et al. (2022) for the same materials and 

traits in a similar prediction scenario. However, while in the study by Crosta et al. (2022) the 

same genotypes were employed for training and validation, in the current work the lines in 

the training and validation set were different, which makes it closer to a real-life scenario. 
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For the non-target genetic base, the predictive performance remained almost constant relative 

to the target genetic base for protein content, while it basically dropped to zero for the other 

traits, in contrast with the modest predictive ability values reported by Crosta et al. (2022) for 

grain and protein yield in a similar scenario. This supports the hypothesis of a simpler genetic 

control of protein content compared with grain and protein yield, which seems in line with 

its higher within-trial broad-sense heritability and lower size of G × E relative to genetic 

effects detected by Crosta et al. (2022). While for the target genetic base across RIL 

population predictive ability always resulted superior to within population values, which was 

in accordance with the expectations, since the former estimation method can account for 

differences in population means, an opposite scenario characterized the non-target genetic 

base. This could be due to the exclusion of the non-target genetic base from the training set 

preventing GS models from predicting trait means of the relative RIL populations, while the 

likely lower variance of predicted and observed breeding values may have contributed to the 

advantage of within relative to across population predictions. The null predictive ability 

found for K × A for all traits and validation environments was completely unexpected and 

contrasted with previous results for the same material and prediction scenarios 

(Annicchiarico et al., 2019; Crosta et al., 2022, unpublished results), and with the fact that 

this population displayed the highest number of polymorphic SNPs. These contradictions, 

together with the fact that most of the lines from this population were genotyped by a different 

company compared with the other populations, may suggest the occurrence of some 

undefined problem during the genotyping procedure, possibly causing these unexpected 

results. The intention would be to repeat the genotyping of K × A lines soon to be more 

certain about the reliability of the genomic data available for this population. Despite less 

striking, also the superior predictions observed for K × I for grain and protein yield were 

surprising and may be attributable to the higher number of polymorphic markers 

characterizing this population relative to the others, except for K × A. In line with this 

rationale, the population ranking for the number of polymorphic SNPs, either computed on 

the whole marker set or on the SNPs featuring the highest 300 or 1,000 effects, perfectly 

reflected that for grain yield predictive ability, except for K × A. For protein content, the 

results of the 100 and 300 SNP scenarios were the most representative of the predictive ability 

values. Indeed, the population ranking for the number of polymorphic markers in the 100 

SNP scenario reflected that for predictive ability in Lodi 2019-20, while the 300 SNP scenario 

highlighted a superior number of polymorphic SNPs in A × G, which was someway reflected 

by the elevated predictive ability detected for this population in Lodi 2018-19. Investigating 
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the number of polymorphic SNPs based on the whole marker set or on a moderately large 

subset of top-effect markers in each test population may provide useful information about the 

potential of GS models to predict grain yield, while this appears more difficult for protein 

content, which was likely controlled by a lower number of loci. Overall, our results appear 

promising for the use of GS in an inter-environment intra-population scenario for all the target 

traits, while the interest of inter-environment inter-population predictions seems to be limited 

to protein content and to specific germplasm sets for grain yield.  
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5. Comparison of genetic gains obtained by phenotypic and genomic selection on 

target and non-target genetic bases for pea grain and protein yield in Italian 

environments  

5.1. Objectives 

The main goal of this work was comparing PS and GS in terms of achieved genetic gains for 

grain and protein yield in Italian environments independent from the training ones, on both 

the same and a different genetic base relative to that employed for GS model training. 

 

 

5.2. Materials and methods 

5.2.1. Plant material, phenotyping, and selection process 

Plant material consisted in the three or two top-performing lines selected for grain and protein 

yield, respectively, by GS and PS from each of six RIL populations, namely A × I, K × A, K 

× I, A × G, D × A, and C × I as previously defined, and the relative parental lines for a total 

of 43 genotypes (Appendix Table 10). GS was applied on an initial set of 63-93 RILs from 

each population (differences in line number were due to the filtering process) that were not 

included in the training set, while PS on a subset of 23 lines from each population. The over 

five-fold higher number, on average, of lines evaluated by GS compared with PS is due to 

the use of the same budget for both selection types and the higher individual cost of PS based 

on two-year data relative to GS (Annicchiarico et al., 2017c). These accessions were 

characterized by using a randomized block design with three replicates in three environments 

of northern and central Italy, of which two employed a late-winter sowing, namely Lodi 2022 

(February 1) and Lodi 2023 (February 7; Picture 3), and one was sown during early-winter, 

namely Perugia 2022-23 (December 1, defined as Perugia 2023 hereafter) (Appendix Table 

11). GS models based on BayesC were trained on mean genotype data of 306 RILs from A × 

I, K × A, and K × I (hereafter defined as GS target genetic base, as opposed to A × G, D × A, 

and C × I, defined as GS non-target genetic base) collected in Lodi 2013-14, Lodi 2014-15, 

and Perugia 2013-14, as described by Crosta et al. (2022). Filtering was performed separately 

for each material set, which was formed by validation RILs from a specific population and 

the whole training set, by using thresholds of MAF > 5%, mpm < 10%, and mps < 50% for 
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all populations, except for A × I, for which mpm < 15% was employed to ensure a SNP 

number comparable with the other populations. 4,831 markers were retained for A × I, 4,325 

for K × A, 4,872 for K × I, 4,010 for A × G, 4,492 for C × I, and 4,867 for D × A. PS was 

based on mean genotype data of Lodi 2018-19 and Lodi 2019-20, as explained by 

Annicchiarico et al. (2021). Several traits were recorded on a plot basis, including: (1) dry 

grain yield, (2) grain protein content, which was measured by NIRS method based on the 

calibration and models described in paragraph 2.2.2., (3) onset of flowering, determined as 

the number of days since March 1 at which half of the plants displayed at least one open 

flower, and (4) farmer acceptability score, expressed on a 1-9 preference scale. 

Picture 3. Field trial in Lodi 2023. 

 

 

5.2.2. Statistical analyses of phenotypic data 

The first analysis included only the RILs and was based on an ANOVA model with selection 

type (PS or GS), GS set (GS target or non-target genetic base), environment, RIL population 

within GS set, all the interactions of 2nd and 3rd degree between these factors, genotype nested 

within the crossing of GS set and selection type, G × E interaction, and replicate as fixed 

factors. The top-performing genotypes for grain yield were analysed by using this trait as the 

response variable, while those selected for protein yield were analysed by using grain and 

protein yield, and protein content by turn as the response variables. The second analysis 

included both the RILs and the parental lines and was based on an ANOVA model with 

genotype group (with four groups represented by the combination of selection type and GS 

set levels, and the fifth by parental lines), environment, genotype within genotype group, all 

the interactions of 2nd degree between these factors, and replicate as fixed factors. The top-

performing genotypes for grain yield were analysed by using this trait, onset of flowering, 

and farmer acceptability score by turn as the response variables, while those selected for 
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protein yield were analysed by using grain and protein yield, and protein content by turn as 

the response variables. All the post-hoc comparisons between means for factors with more 

than two levels were performed, when the relative factor resulted significant in the ANOVA 

(alpha = 0.05), according to Duncan’s test (alpha = 0.05) by duncan.test() function from R 

package agricolae. The sum of squares reported for the ANOVA were of type III. The rate of 

genetic progress achieved in one year by PS or GS for each RIL population was estimated by 

multiplying the percentage genetic gain relative to the parent mean by the number of selection 

cycles performed in one year, namely 2 for GS, and 1 or 0.5 for PS based on one- or two-year 

data, respectively. 

 

 

5.3. Results 

5.3.1. Statistical analyses of phenotypic data 

ANOVA results (Appendix Table 12) of top-performing lines for grain yield highlighted a 

significant advantage of RILs selected by PS compared with GS, as well as of lines from the GS 

target relative to the non-target genetic base (Table 14). In line with ANOVA results (Appendix 

Table 12), according to which RIL population interaction with selection type was not significant, 

all RIL populations showed a better performance of PS lines compared with GS ones, as reflected 

also by the genetic gains of the two selection types with respect to parent mean (Table 15). Indeed, 

the genetic gains obtained by PS were much higher compared with GS for all RIL populations 

except for K × I, for which the two values were almost equivalent (Table 15).  

Table 14. Grain yield mean of top-performing lines selected for this trait by either GS or PS, and of lines from 

RIL populations belonging (target) or not (non-target) to the GS training set with the associated standard error 

(SE). Different letters indicate a significant difference between means at alpha = 0.05 according to ANOVA 

results (Appendix Table 12). 

Grain yield (t/ha) 

Selection type Mean SE GS set Mean SE 

PS 4.12 a 0.076 target 4.23 a 0.076 

GS 3.63 b 0.076 non-target 3.52 b 0.076 
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Table 15. Grain yield mean of top-performing lines selected for this trait by either GS or PS from each RIL 

population (RIL), associated standard error (SE), and percentage genetic gains obtained by GS and PS with 

respect to parent mean (gain GS/PS %). 

Grain yield (t/ha) 

RIL GS PS SE Gain GS % Gain PS % 

A × I 3.54 4.23 0.186 8.5 29.8 

K × A 4.38 4.84 0.186 11.7 23.4 

K × I 4.17 4.22 0.186 19.1 20.4 

A × G 3.22 3.87 0.186 -4.8 14.4 

C × I 3.23 3.76 0.186 1.3 17.7 

D × A 3.23 3.79 0.186 -7.3 8.7 

 

A very similar pattern was observed for the lines selected for protein yield by using this trait as the 

response variable, namely a significantly superior performance of PS compared with GS RILs, as 

well as of lines from the GS target relative to the non-target genetic base (Table 16; Appendix Table 

13). Moreover, the same trend was observed for grain yield of these lines, confirming the strict 

relationship occurring between grain and protein yield, while protein content showed no significant 

difference between the two selection types, but a significant superiority of the lines from the GS 

target over those from the non-target genetic base (Table 16; Appendix Table 14 and 15). Like the 

top-performing lines for grain yield, also the best lines for protein yield showed no significant 

interaction in the ANOVA between RIL population and selection type for both the target trait and 

grain yield (Appendix Table 13; Appendix Table 14). Indeed, PS outperformed GS in terms of 

achieved genetic gains for protein yield in all RIL populations except for K × I and A × G, for 

which GS and PS displayed similar values (Table 17). Differently, the interaction between RIL 

population and selection type resulted significant for protein content (Appendix Table 15), for 

which the difference between PS and GS means was largely dependent on the RIL population 

(Table 17). When genetic gains were referred to one selection year, the superiority of PS over GS 

was dramatically reduced or nullified for RIL populations in the GS target genetic base, with GS 

displaying a marked advantage over both PS scenarios in K × I for grain and protein yield and in 

K × A for protein yield, and over the two-year PS scenario for both these populations and traits 

(Table 18). In contrast, PS still performed considerably better than GS in all cases for RIL 

populations out of the GS target genetic base, except for protein yield in A × G, for which GS 

ensured higher genetic progress per year than PS in both scenarios (Table 18).  
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Table 16. Mean of top-performing lines selected for protein yield by either GS or PS and belonging (target) or 

not (non-target) to RIL populations included in the GS training set for three pea traits with the associated 

standard error (SE). Different letters indicate a significant difference between means at alpha = 0.05 according 

to ANOVA results (Appendix Table 13, 14, and 15). 

  Protein yield (t/ha)  Grain yield (t/ha)  Protein content (%) 

Selection type  Mean SE  Mean SE  Mean SE 

PS  1.00 a 0.025  4.04 a 0.101  24.83 a 0.053 

GS  0.90 b 0.025  3.64 b 0.101  24.70 a 0.053 

GS set  Mean SE  Mean SE  Mean SE 

target  1.02 a 0.025  4.12 a 0.101  25.00 a 0.053 

non-target  0.87 b 0.025  3.56 b 0.101  24.52 b 0.053 

 

Table 17. Mean of top-performing lines selected for protein yield by either GS or PS from each RIL population 

(RIL) and associated standard error (SE) for three pea traits. Percentage genetic gains obtained by GS and PS 

with respect to parent mean were displayed for protein yield. Different letters indicate significant differences 

between selection type means within each population at alpha = 0.05 according to ANOVA results (Appendix 

Table 13, 14, and 15) and comparisons based on least significant difference. 

Protein yield (t/ha)  Grain yield (t/ha)  Protein content (%) 

RIL GS PS SE Gain GS % Gain PS %  GS PS SE  GS PS SE 

A × I 0.84 1.03 0.061 8.15 32.32  3.49 4.22 0.247  24.30 a 24.45 a 0.130 

K × A 1.10 1.17 0.061 14.26 21.33  4.36 4.73 0.247  25.29 a 24.86 b 0.130 

K × I 1.01 1.00 0.061 18.13 16.25  4.03 3.92 0.247  25.55 a 25.58 a 0.130 

A × G 0.94 0.92 0.061 12.90 11.24  3.76 3.74 0.247  24.61 a 24.61 a 0.130 

C × I 0.76 0.97 0.061 -1.51 25.52  3.19 3.97 0.247  24.12 a 24.78 b 0.130 

D × A 0.74 0.90 0.061 -12.37 7.77  3.04 3.69 0.247  24.33 a 24.69 b 0.130 

 

Table 18. Percentage genetic gains relative to parent mean obtained in one year by GS and PS for each RIL 

population (RIL) according to two PS scenarios relying on experiments performed during a single (tP = 1) or 

two (tP = 2) years. The assumed duration of one GS cycle was of half a year. 

 Grain yield (t/ha)  Protein yield (t/ha) 

 tP = 1  tP = 2  tP = 1  tP = 2 

RIL GS PS  GS PS  GS PS  GS PS  

A × I 17.0 29.8  17.0 14.9  16.3 32.3  16.3 16.2 

K × A 23.5 23.4  23.5 11.7  28.5 21.3  28.5 10.7 

K × I 38.2 20.4  38.2 10.2  36.3 16.3  36.3 8.1 

A × G -9.6 14.4  -9.6 7.2  25.8 11.2  25.8 5.6 

C × I 2.5 17.7  2.5 8.8  -3.0 25.5  -3.0 12.8 

D × A -14.6 8.7  -14.6 4.4  -24.7 7.8  -24.7 3.9 

 

ANOVA based on top performing RILs for grain yield and parental lines highlighted a 

significant effect of the genotype group and its interaction with the environment, when using 

grain yield as the response variable (Appendix Table 16). Accordingly, the group ranking 

varied greatly with the environment, except for PS lines belonging to the GS target genetic 

base that resulted top performing in all the environments (Table 19). Genotype mean data 

across environments confirmed the superiority of this genotype group relative to the others, 
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while GS lines from the non-target genetic base and parental lines emerged as the worst-

performing groups, with range values mostly reflecting this pattern (Table 19). ANOVA 

models for the same lines with onset of flowering and farmer acceptability score as the 

response variables both highlighted a significant effect of the genotype group (Appendix 

Table 17; Appendix Table 18). Interestingly, GS lines resulted as more late flowering 

compared with PS ones within each GS set, as well as lines belonging to the GS target genetic 

base relative to those from the non-target genetic base. Parental lines and PS RILs from the 

GS non-target genetic base emerged as the groups featuring the significantly earliest 

flowering (Table 19). Farmer acceptability data followed a similar pattern, with PS lines 

displaying significantly higher values compared with GS ones within each GS set, as well as 

lines from the GS target relative to the non-target genetic base. RILs selected by GS from the 

non-target genetic base displayed the lowest farmer preference (Table 19). ANOVA based 

on parental lines and RILs selected for protein yield highlighted a significant effect of both 

genotype group and its interaction with the environment when protein yield was used as the 

response variable (Appendix Table 19). PS lines from the GS target genetic base emerged as 

the best group, despite with no significant difference from PS lines of the non-target genetic 

base in the single environments, and from GS lines from the target genetic base in Lodi and 

Perugia 2023 (Table 20). Genotype mean data across environments confirmed the superiority 

of PS lines from the GS target genetic base, but with no significant difference from GS lines 

belonging to the same material set, while PS proved significantly superior to GS for the non-

target genetic base (Table 20). Grain yield mean genotype data of the same lines reflected 

exactly the pattern just described for protein yield (Appendix Table 20; Table 20), and a 

similar trend was detected also for protein content, with PS and GS being equivalent for the 

GS target genetic base, while PS resulted significantly better in the other material set 

(Appendix Table 21; Table 20).  
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Table 19. Grain yield means (t/ha) within or across environments and mean genotype range across environments 

for genotype groups, of which four consisted in the combination of selection type (PS or GS) and GS set (target 

and non-target) levels, and the fifth in parental lines. Genotype group means across environments were displayed 

also for flowering time (days since March 1) and farmer score (1-9). Different letters indicate significant 

differences at alpha = 0.05 between genotype group means based on ANOVA (Appendix Table 16, 17, and 18) 

and Duncan’s test results. 

                  Grain yield  Flowering time  Farmer score 

Material Lodi 2022 Lodi 2023 Perugia 2023 Mean Range  Mean  Mean 

PS-target 3.19 a  5.65 a 4.45 a 4.43 a 3.83-5.07  59.3 b  5.8 b 

GS-target 2.79 b 5.29 a 4.02 a 4.03 b 3.02-4.59  60.8 a  5.7 a 

PS-non-target 3.12 a 4.98 a 3.31 b 3.80 b 3.43-4.23  56.8 d  5.5 d 

GS-non-target 2.81 b 3.89 b 2.97 b 3.23 c 2.49-4.45  58.4 c  5.1 c 

Parents 3.12 a 4.15 b 3.03 b 3.43 c 2.84-4.16  57.0 d  5.4 d 

 

Table 20. Protein yield means within or across environments and mean genotype range across environments 

for genotype groups, of which four consisted in the combination of selection type (PS or GS) and GS set (target 

and non-target) levels, and the fifth in parental lines. Genotype group means across environments were displayed 

also for grain yield and protein content. Different letters indicate significant differences at alpha = 0.05 between 

genotype group means based on ANOVA (Appendix Table 19, 20, and 21) and Duncan’s test results. 

 

 Protein yield (t/ha)  Grain yield (t/ha)  Protein content (%) 

Material Lodi 2022 Lodi 2023 Perugia 2023 Mean Range  Mean  Mean 

PS-target 0.82 a 1.37 a 1.04 a 1.06 a 0.96-1.17  4.29 a  24.98 a 

GS-target 0.74 b 1.26 a 0.95 a 0.98 ab 0.74-1.16  3.96 ab  25.04 a 

PS-non-target 0.81 a 1.15 ab 0.83 ab 0.93 bc 0.84.1.05  3.80 bc  24.69 b 

GS-non-target 0.77 ab 1.02 b 0.64 b 0.81 d 0.69-1.11  3.33 d  24.39 c 

Parents 0.81 a 0.98 b 0.73 b 0.84 cd 0.67-1.04  3.43 cd  24.52 bc 

 

 

 

 

5.4. Discussion 

The choice of using two different sets of environments for GS training and PS evaluations 

was motivated by the attempt of sticking as much as possible to a real-life scenario, in which 

the options would be either to employ an existing GS model or to perform field trials to get 

data for PS. However, the difference in heritability between the two sets of environments 

likely played an important role in determining the superiority of PS compared with GS top-

performing lines observed in the first analysis for grain and protein yield both across and 

within most RIL populations. Indeed, mean broad-sense heritability for grain yield was equal 

to 0.71 in PS environments (Annicchiarico et al., 2021), while amounting to 0.52 in GS 

training environments (Crosta et al., 2022). Mean protein yield broad-sense heritability 

amounted to 0.54 in GS training environments, whereas it was not possible to compute it in 

PS environments, since protein content was measured on pooled replicate material of each 

genotype. Anyway, the strict relationship observed between grain and protein yield in our 
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data and in the work by Crosta et al. (2022), suggests that the difference in mean heritability 

between PS and GS environments for protein yield was likely close to that detected for grain 

yield. Another reason behind PS advantage over GS might be the fact that one of PS 

environments, namely Lodi 2019-20, featured early winter sowing likewise the evaluation 

experiments of the top-performing lines, which were sown during early or late winter, while 

GS training environments were autumn-sown. This means that GS models likely accounted 

for a strong impact of cold tolerance especially on grain yield determination, but this aspect 

was probably not so important in the test environments of the best lines and in Lodi 2019-20, 

since winter sowing may have implied delayed plant emergence allowing for cold stress 

avoidance. Interestingly, the advantage of PS lines over GS ones was someway inferior for 

protein yield compared with grain yield, especially for the GS target genetic base (Table 19 

and 20). This might be due to protein content featuring a higher within-trial broad-sense 

heritability and a lower influence of G × E compared with grain yield (Crosta et al., 2022), 

possibly mitigating the advantage of PS over GS training environments for protein yield. The 

significant farmer preference for genotypes selected by PS compared with GS for grain yield 

within each GS set was also probably related to the higher grain yield heritability and 

similarity to the test experiments of PS relative to GS training environments. In addition, the 

significantly earlier flowering of PS lines relative to GS ones within each GS set was likely 

due to higher terminal drought characterizing PS with respect to GS training environments, 

as supported by a lower rainfall amount during late winter and spring, especially in Lodi 

2019-20 (Appendix Table 11). Based on these considerations, a scenario according to which 

grain yield in the PS and evaluation environments was primarily limited by terminal drought, 

whereas winter cold stress represented the main constraint in GS training experiments, can 

be hypothesized. Indeed, only in Lodi 2022, namely the evaluation environment featuring the 

lowest rainfall and so probably the highest terminal drought level (Appendix Table 11), the 

top-performing lines identified for grain yield by PS resulted significantly superior to those 

detected by GS within each GS set for this trait. As expected for the GS target genetic base, 

GS tended to become increasingly advantageous in terms of achieved genetic gains per year 

for grain and protein yield compared with PS when the latter was based on an increasing 

number of years, while the trend was the opposite for the non-target genetic base. In this 

context, the superior genetic gain per year achieved for protein yield by GS relative to both 

PS scenarios in A × G was quite surprising, especially considering that an opposite trend 

characterized grain yield selections. This might be related to an elevated GS predictive ability 

for protein content in this population, as suggested by the results of previous analyses 
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(paragraph 4.3.1.). The significantly higher mean displayed by the GS target compared with 

the non-target genetic base for all traits and selections in the analysis excluding the parental 

lines, was confirmed by the analysis that included these genotypes, highlighting a significant 

superiority of the GS target genetic base within each selection type for target traits or their 

components across environments. This result was largely expected for GS, but not for PS, for 

which it was likely motivated by the superior breeding value of the GS target genetic base 

for the traits of interest that was at the base of its choice as GS model training set. In 

conclusion, GS resulted largely convenient in terms of achieved genetic gains per year for 

grain and protein yield compared with PS for material from the same genetic base used for 

GS model training, while the opposite tended to be true for materials not included in the GS 

training set, with possible exceptions for protein yield in specific germplasm sets. 
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6. Conclusions 

Although GS concept was introduced in the early 2000’s by Meuwissen et al. (2001), its 

large-scale application was possible only in more recent years thanks to the decrease of 

genotyping costs brought about by Next Generation Sequencing advancements. While 

several studies have been conducted about GS application to breeding of major cereals, little 

research work has been performed on minor crops, such as legumes. In this context, the 

current work was aimed at investigating the potential of GS for the prediction of grain yield, 

protein content, and their combination in pea in different scenarios.  

The two GWAS performed for each of grain yield and protein content highlighted overall 

many significant markers spread across the genome, as well as many markers approaching 

significance in different genomic regions, suggesting a polygenic control of both traits. For 

this reason, although a finer gene mapping might be of interest to identify major-effect genes, 

GS appears as the most valid option to account for all the genomic regions influencing these 

traits. The higher GS predictive ability detected for protein content both in the intra- and 

inter-population prediction scenarios compared with grain and protein yield (paragraphs 

2.3.2., 3.3.2., and 4.3.1.) suggests a lower genetic complexity of the former trait, as supported 

by the higher within-trial broad-sense heritability (paragraphs 2.3.2. and 3.3.2.) and lower 

size of G × E relative to genetic effects (paragraph 2.3.1.). Protein yield, which was regarded 

as the trait featuring the highest farmer interest, appeared mainly determined by grain yield 

both in breeding (paragraph 2.3.1.) and germplasm material (paragraph 3.3.1.), stressing the 

importance of improving this component to enhance protein production per unit of area. 

Moreover, the lack of substantial genetic correlation between grain yield and protein content 

detected in both narrow (paragraph 2.3.1.) and wide genetic bases (paragraph 3.3.1.) and in 

different environments encourages the simultaneous improvement of these traits. The mean 

predictive ability of GS models in the inter-environment, intra-population scenario resulted 

satisfactory for all the target traits in the narrow genetic base represented by three connected 

RIL populations, despite with some differences between the single populations employed for 

validation (paragraph 4.3.1.). These encouraging results were confirmed in a wider genetic 

base, namely the worldwide germplasm collection, although in this case the validation was 

performed on data from the same environment used for model training (paragraph 3.3.2.). On 

average, the GS inter-population prediction scenario implied a considerable predictive ability 

drop compared with the intra-population scenario, especially for grain and protein yield, 

although its size varied largely depending on the trait and the combination of training and 
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validation sets and environments (paragraphs 2.3.2., 3.3.2., and 4.3.1.). Indeed, a remarkable 

predictive ability variation between different validation sets emerged for all traits in this GS 

scenario both for partially related or unrelated training and validation materials, as 

represented by sets of RIL populations with one common parent (paragraphs 2.3.2. and 

4.3.1.), or a worldwide germplasm collection and three connected RIL populations 

(paragraph 3.3.2.). A higher genetic diversity in the training and validation set seems to 

contribute to better GS performance especially for grain yield prediction (paragraphs 3.3.2., 

and 4.3.1.), while predictive ability for protein content seems mainly influenced by the 

genetic diversity in a more restricted set of top-effect markers, at least in breeding material 

(paragraph 4.3.1.). A better understanding of the mechanisms underlying these differences in 

GS model performance would have a great practical importance, possibly allowing the 

preliminary assessment of GS predictive potential for a specific germplasm set. This 

evaluation can also be conducted by estimating GS predictive ability on small subsets of lines 

from each material set and may enable an effective application of GS on specific materials 

not included in the training population, considering the high predictive ability values 

observed even for grain and protein yield of some RIL populations. Moreover, it cannot be 

excluded that, especially for GS models trained on the germplasm collection, increasing 

marker density may contribute to reduce the differences in predictive ability between 

populations, allowing to track most of the relevant QTLs for each validation population. GS 

showed a considerably higher predicted efficiency for protein yield improvement both in the 

intra- and inter-population scenarios compared with PS based on two-year testing (paragraph 

2.3.3.), which likely represents the minimum evaluation time, considering that climate change 

is increasing the relative importance of genotype × year and genotype × location × year 

variance components relative to genotype × location one (Annicchiarico, 2020; Crosta et al., 

2022). While our results in terms of achieved genetic gains tended to confirm those of 

predicted efficiency for RIL populations belonging to the GS target genetic base for grain 

and protein yield, the scenario was the opposite for the non-target genetic base, despite the 

occurrence of relevant variation between traits and populations in both material sets 

(paragraph 5.3.1.). These results suggest that using the same environments for GS training 

and PS evaluations may favour an unbiased comparison of the achieved genetic gains by 

reducing the influence of environmental confounding factors, which in our case implied a 

much higher grain yield heritability in PS compared with GS environments. In addition, 

adopting a similar sowing time for both selection and evaluation environments should further 

decrease the background noise. Finally, it is useful to remind that the use of a limited number 
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of GS training environments and the application of GS models to predict target traits in 

genetic bases differing from the training one, respond to the need to limit the phenotyping 

investment for a cost-efficient application of GS. In this regard, it is fundamental to 

emphasize once again the importance of conducting in parallel the development of the GS 

training set by methods allowing for accelerated generation advancement (growth chamber 

or greenhouse) and that of the target selection population to exploit GS reduced cycle length 

relative to PS.  

Overall, the main conclusions that can be drawn from this work are: 

• Protein content is an easier breeding target than grain yield, because of lower G × E 

size relative to genetic effects and higher within-trial broad-sense heritability 

• Grain yield and protein content do not show sizeable inverse genetic correlation in 

most conditions and materials, thereby facilitating their simultaneous improvement 

• Grain yield has a much higher impact on protein yield than protein content 

• The expected polygenic control of grain yield and protein content was confirmed 

• GS can be a valid method for the identification of superior genotypes for grain yield, 

protein content, and protein yield in an intra-population scenario, showing greater 

achieved genetic gains per unit time than PS  

• The application of GS models on a different genetic base from that employed for 

training can be a valid option for protein content improvement, while its value for 

grain and protein yield depends on the specific genetic base 
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8. Appendix 

 

Figure 1. Quantile-Quantile plots of expected vs. observed association scores of 18,674 SNPs for two pea traits 

and 276 pea lines belonging to three connected RIL populations. The red line represents equality between the 

expected and observed quantiles and the grey area the associated 95% confidence interval. The two upper plots 

refer to mean trait data across three environments, while the lower two to data from two single environments. 

 

 

Table 1. Trait mean value in three test environments of 306 pea inbred lines belonging to three connected RIL 

populations. Row means followed by different letters differ at p < 0.05.  

Trait Lodi 2013-2014 Lodi 2014-2015 Perugia 2013-2014 SE 

Grain yield (t/ha) 6.31 a 4.59 b 2.90 c 0.35 

Protein content (%) 25.32 a 23.22 c 24.26 b 0.15 

Protein yield (t/ha) 1.60 a 1.07 b 0.70 c 0.09 
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Table 2. Climate, soil, and long-term climate characteristics of three pea test environments according to FAO 

(2006) Guidelines for soil description, 4th. Rome: Food and Agricultural Organization. 

Item Lodi 2013-14 Lodi 2014-15 Perugia 2013-14 Lodi long-term Perugia long-term 

Crop management system Organic Conventional Organic - - 

Rainfall, Jan.-Mar. (mm) 343 198 280 161 177 

Rainfall, Apr.-May (mm) 122 147 179 154 142 

Absolute minimum daily T (°C) –5.7 –11.6 –3.6 –7.7 –5.0 

Mean of max. daily T, May (°C) 23.2 23.9 23.4 21.8 23.0 

Soil texture Silt-loam Sandy-loam Silty-clay-loam - - 

Soil pH 7.9 6.3 7.6 - - 

 

Table 3. Components of variance relative to genotype (𝑆𝐺
2

), genotype × environment interaction (𝑆𝐺𝐸
2

), RIL 

population (𝑆𝑅
2

), genotype within RIL population (𝑆𝐺(𝑅)
2

), RIL population × environment interaction (𝑆𝑅𝐸
2

), and 

genotype within RIL population × environment interaction (𝑆𝐺(𝑅)𝐸
2

) for three traits in three test environments 

of 306 pea lines belonging to three connected RIL populations. All variance components were significantly 

different from zero at p < 0.01. 

 Without RIL population  With RIL population 

Trait 𝑺𝑮
𝟐  𝑺𝑮𝑬

𝟐  𝑺𝑮
𝟐 / 𝑺𝑮𝑬

𝟐   𝑺𝑹
𝟐  𝑺𝑮(𝑹)

𝟐  𝑺𝑹𝑬
𝟐  𝑺𝑮(𝑹)𝑬

𝟐  

Grain yield (t/ha) 0.575 1.435 0.401  0.080 0.520 1.121 0.693 

Protein content (%) 0.724 0.302 2.393  0.131 0.637 0.199 0.167 

Protein yield (t/ha) 0.036 0.085 0.422  0.003 0.034 0.068 0.040 
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Table 4. Mean value of parental lines of three connected RIL populations and cultivar Spacial for three pea traits 

in three test environments. Row means followed by different letters differ at p < 0.05. 

  Mean value 

Trait Environment Attika Kaspa Isard Spacial 

Yield (t/ha) Lodi 2013-2014 4.97 b 7.16 a 6.36 ab 7.82 a 

 Lodi 2014-2015 1.34 c 2.14 c 6.39 a 3.66 b 

 Perugia 2013-2014 2.13 c 3.34 ab 2.59 bc 3.70 a 

Protein content (%) Lodi 2013-2014 23.68 c 26.82 a 24.30 bc 24.87 b 

 Lodi 2014-2015 22.71 b 23.54 a 21.90 c 21.68 c 

 Perugia 2013-2014 22.89 c 26.08 a 23.04 c 24.16 b 

Protein yield (t/ha) Lodi 2013-2014 1.18 c 1.92 a 1.54 b 1.95 a 

 Lodi 2014-2015 0.30 c 0.50 bc 1.40 a 0.80 b 

 Perugia 2013-2014 0.49 b 0.87 a 0.60 b 0.90 a 

 

Figure 2. Plots of linkage disequilibrium (r2) decay with physical distance for pea chromosomes. r2 was 

estimated on pairwise combinations of 18,674 SNPs within a 100 kb window for 276 pea lines belonging to 

three connected RIL populations. 
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Table 5. Significant markers detected by a GWAS based on 18,674 SNPs and 276 pea lines belonging to three 

connected RIL populations for two traits averaged across three test environments and one trait in two single 

environments, with the relative estimated effect. 

SNP Trait Effect 

chr1LG6_167158777 Grain yield; grain yield, Lodi 2014-15 0.29 

chr3LG5_110943532 Grain yield 0.36 

chr6LG2_112957117 Grain yield 0.30 

chr5LG3_555982018 Grain yield; grain yield, Lodi 2014-15 0.33 

chr6LG2_72049750 Grain yield 0.26 

chr5LG3_548298174 Protein content 0.33 

scaffold00731_102978 Protein content 0.10 

chr1LG6_14126991 Protein content 0.30 

chr3LG5_122898115 Protein content 0.36 

chr5LG3_238119406 Protein content 0.36 

chr4LG4_7076997 Protein content 0.33 

chr5LG3_112688292 Protein content 0.37 

chr1LG6_55881393 Protein content 0.14 

chr2LG1_23689490 Protein content 0.34 

chr3LG5_13152476 Protein content 0.30 

chr6LG2_75499720 Grain yield, Lodi 2013-14 0.33 

chr2LG1_293191007 Grain yield, Lodi 2013-14 0.35 

chr6LG2_252910779 Grain yield, Lodi 2013-14 0.28 

chr3LG5_302412301 Grain yield, Lodi 2013-14 0.07 

chr3LG5_213572246 Grain yield, Lodi 2014-15 0.36 

chr6LG2_78688716 Grain yield, Lodi 2014-15 0.30 

chr5LG3_207358795 Grain yield, Lodi 2014-15 0.28 

chr1LG6_195757998 Grain yield, Lodi 2014-15 0.35 

chr2LG1_383235559 Grain yield, Lodi 2014-15 0.36 

chr3LG5_109454037 Grain yield, Lodi 2014-15 0.36 

 

Table 6. List of genes potentially associated to the significant SNPs detected by a GWAS based on 18,674 SNPs 

and 276 lines belonging to three connected RIL populations for two pea traits averaged across three test 

environments. Candidate genes were identified by scanning a 100 kb region in both directions from each 

significant SNP and are reported with their annotated function (https://urgi.versailles.inra.fr/).  

Significant_SNP Trait Candidate_Gene Function 

chr1LG6_167158777 Grain yield Psat1g096760 Phosphatidylethanolamine-binding protein 

chr1LG6_167158777 Grain yield Psat1g096800 TatD related DNase 

chr1LG6_167158777 Grain yield Psat1g096840 Major intrinsic protein 

chr1LG6_167158777 Grain yield Psat1g096880 GDA1/CD39 (nucleoside phosphatase) family 

chr1LG6_167158777 Grain yield Psat1g096920 Unknown gene 

chr3LG5_110943532 Grain yield Psat3g051800 Utp11 protein 

chr3LG5_110943532 Grain yield Psat3g051840 Zinc finger + C3HC4 RING-type 

chr3LG5_110943532 Grain yield Psat3g051880 RING-variant domain 

chr3LG5_110943532 Grain yield Psat3g051920 TPR repeat region circular profile 

chr3LG5_110943532 Grain yield Psat3g051960 PfkB family carbohydrate kinase 

chr3LG5_110943532 Grain yield Psat3g052000 Unknown gene 

chr6LG2_112957117 Grain yield Psat6g081160 Unknown gene 

https://urgi.versailles.inra.fr/
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chr6LG2_112957117 Grain yield Psat6g081200 Zinc-binding in reverse transcriptase 

chr6LG2_112957117 Grain yield Psat6g081240 Glutathione S-transferase + N-terminal domain 

chr6LG2_112957117 Grain yield Psat6g081280 Unknown gene 

chr5LG3_555982018 Grain yield Psat5g289640 Electron transfer flavoprotein-ubiquinone oxidoreductase + 4Fe-4S 

chr5LG3_555982018 Grain yield Psat5g289680 

Regulation of cellular nucleobase + nucleoside + nucleotide and nucleic 

acid metabolic process 

chr5LG3_555982018 Grain yield Psat5g289720 Metallo-beta-lactamase superfamily 

chr5LG3_555982018 Grain yield Psat5g289760 BZIP transcription factor 

chr6LG2_72049750 Grain yield Psat6g064240 WD domain + G-beta repeat 

chr6LG2_72049750 Grain yield Psat6g064280 Protein of unknown function (DUF861) 

chr6LG2_72049750 Grain yield Psat6g064320 Beta-ketoacyl synthase + C-terminal domain 

chr6LG2_72049750 Grain yield Psat6g064360 Beta-ketoacyl synthase + N-terminal domain 

chr6LG2_72049750 Grain yield Psat6g064400 Zinc-binding dehydrogenase 

chr6LG2_72049750 Grain yield Psat6g064440 TPR repeat region circular profile 

chr6LG2_72049750 Grain yield Psat6g064480 Unknown gene 

chr6LG2_72049750 Grain yield Psat6g064520 ABC transporter 

chr5LG3_548298174 Protein content Psat5g282440 UAA transporter family 

chr5LG3_548298174 Protein content Psat5g282480 Homeobox' domain profile 

chr5LG3_548298174 Protein content Psat5g282520 Unknown gene 

chr5LG3_548298174 Protein content Psat5g282600 3 +4-dihydroxy-2-butanone 4-phosphate synthase 

chr1LG6_14126991 Protein content Psat1g010880 Transferase activity + transferring phosphorus-containing groups 

chr1LG6_14126991 Protein content Psat1g010920 

Cellular nucleobase + nucleoside + nucleotide and nucleic acid 

metabolic process 

chr1LG6_14126991 Protein content Psat1g010960 Serine/cysteine peptidase + trypsin-like 

chr1LG6_14126991 Protein content Psat1g011000 Serine/cysteine peptidase + trypsin-like 

chr3LG5_122898115 Protein content Psat3g058360 Unknown gene 

chr3LG5_122898115 Protein content Psat3g058400 AP2 domain 

chr3LG5_122898115 Protein content Psat3g058440 Ring finger domain 

chr3LG5_122898115 Protein content Psat3g058480 Autophagy protein Apg9 

chr3LG5_122898115 Protein content Psat3g058520 Unknown gene 

chr3LG5_122898115 Protein content Psat3g058560 Myc-type + basic helix-loop-helix (bHLH) domain profile 

chr3LG5_122898115 Protein content Psat3g058600 HR-like lesion-inducing 

chr5LG3_238119406 Protein content Psat5g132320 LysM domain 

chr5LG3_238119406 Protein content Psat5g132360 Transcription factor Tfb4 

chr5LG3_238119406 Protein content Psat5g132400 Transcription factor Tfb4 

chr5LG3_238119406 Protein content Psat5g132440 Histone chaperone domain CHZ 

chr4LG4_7076997 Protein content Psat4g006600 Galactosyltransferase 

chr4LG4_7076997 Protein content Psat4g006640 Unknown gene 

chr4LG4_7076997 Protein content Psat4g006680 Methyltransferase TYW3 

chr5LG3_112688292 Protein content Psat5g062600 NYN domain 

chr5LG3_112688292 Protein content Psat5g062640 EamA-like transporter family 

chr5LG3_112688292 Protein content Psat5g062680 Unknown gene 

chr5LG3_112688292 Protein content Psat5g062720 Triose-phosphate Transporter family 

chr5LG3_112688292 Protein content Psat5g062760 ABC transporter 

chr5LG3_112688292 Protein content Psat5g062800 Cyanobacterial and plant NDH-1 subunit O 

chr1LG6_55881393 Protein content NA NA 

chr2LG1_23689490 Protein content Psat2g022120 FAM91 N-terminus 

chr2LG1_23689490 Protein content Psat2g022160 Leucine rich repeat N-terminal domain 

chr2LG1_23689490 Protein content Psat2g022240 Clathrin adaptor complex small chain 

chr2LG1_23689490 Protein content Psat2g022280 Intracellular membrane-bounded organelle 
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chr2LG1_23689490 Protein content Psat2g022320 Ethylene insensitive 3 

chr3LG5_13152476 Protein content Psat3g004240 BTB/POZ domain 

chr3LG5_13152476 Protein content Psat3g004280 Unknown gene 

chr3LG5_13152476 Protein content Psat3g004320 BTB/POZ domain 

chr3LG5_13152476 Protein content Psat3g004360 BTB And C-terminal Kelch 

chr3LG5_13152476 Protein content Psat3g004400 BTB/POZ domain 

chr3LG5_13152476 Protein content Psat3g004440 BTB/POZ domain 

 

Table 7. Information regarding a worldwide pea germplasm collection including 220 landraces from 19 regional 

pools and 11 modern cultivars. 

Accession name Germplasm pool Geographic area Germplasm type Donor institution 

IG116297 Turkey Western Asia Landrace/old cultivar ICARDA 

IG51989 India India Landrace/old cultivar ICARDA 

IG112140 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG50673 Greece Southern Europe Landrace/old cultivar ICARDA 

IG123136 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG50311 Turkey Western Asia Landrace/old cultivar ICARDA 

IG128863 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG51529 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG51994 India India Landrace/old cultivar ICARDA 

IG49633 Greece Southern Europe Landrace/old cultivar ICARDA 

IG52455 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG52596 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG52459 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG52036 China China Landrace/old cultivar ICARDA 

IG52442 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG49610 Greece Southern Europe Landrace/old cultivar ICARDA 

IG123006 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123242 China China Landrace/old cultivar ICARDA 

IG50756 Greece Southern Europe Landrace/old cultivar ICARDA 

IG50358 Turkey Western Asia Landrace/old cultivar ICARDA 

IG50250 Turkey Western Asia Landrace/old cultivar ICARDA 

IG125543 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG52383 China China Landrace/old cultivar ICARDA 

IG134619 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG134828 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123313 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG50235 India India Landrace/old cultivar ICARDA 

IG115331 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG123237 China China Landrace/old cultivar ICARDA 

IG52535 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG50559 Greece Southern Europe Landrace/old cultivar ICARDA 

IG52456 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG52426 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG123244 China China Landrace/old cultivar ICARDA 

IG125600 Central Asia Central Asia Landrace/old cultivar ICARDA 
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IG116232 Turkey Western Asia Landrace/old cultivar ICARDA 

IG51948 India India Landrace/old cultivar ICARDA 

IG134080 Balkans Central Europe Landrace/old cultivar ICARDA 

IG49176 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123248 China China Landrace/old cultivar ICARDA 

IG49544 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG51576 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123080 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG51927 India India Landrace/old cultivar ICARDA 

IG134772 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG51687 Greece Southern Europe Landrace/old cultivar ICARDA 

IG115341 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG50570 Greece Southern Europe Landrace/old cultivar ICARDA 

IG114914 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG50584 Greece Southern Europe Landrace/old cultivar ICARDA 

IG123245 China China Landrace/old cultivar ICARDA 

IG52586 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG134788 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG125597 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG122966 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG134718 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG52496 Turkey Western Asia Landrace/old cultivar ICARDA 

IG115145 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG123118 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG52040 China China Landrace/old cultivar ICARDA 

IG123041 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG49181 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG52417 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG51957 India India Landrace/old cultivar ICARDA 

IG114899 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG134746 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG115114 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG125324 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG50303 India India Landrace/old cultivar ICARDA 

IG50641 Greece Southern Europe Landrace/old cultivar ICARDA 

IG128856 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG125471 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG134109 Balkans Central Europe Landrace/old cultivar ICARDA 

IG49189 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG124857 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG51520 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG134862 Balkans Central Europe Landrace/old cultivar ICARDA 

IG115100 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG125326 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG114977 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG124664 China China Landrace/old cultivar ICARDA 

IG52050 India India Landrace/old cultivar ICARDA 
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IG122974 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG122996 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG51976 India India Landrace/old cultivar ICARDA 

IG115266 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG50362 Turkey Western Asia Landrace/old cultivar ICARDA 

IG134744 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123312 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG134094 Balkans Central Europe Landrace/old cultivar ICARDA 

IG134841 Balkans Central Europe Landrace/old cultivar ICARDA 

IG50669 China China Landrace/old cultivar ICARDA 

IG115228 Nepal Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG128973 Balkans Central Europe Landrace/old cultivar ICARDA 

IG125415 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG125550 China China Landrace/old cultivar ICARDA 

IG125336 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG125472 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123073 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG134823 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123240 China China Landrace/old cultivar ICARDA 

IG125589 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG134707 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG129002 Greece Southern Europe Landrace/old cultivar ICARDA 

IG52534 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG123311 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG123050 Turkey Western Asia Landrace/old cultivar ICARDA 

IG134060 Balkans Central Europe Landrace/old cultivar ICARDA 

IG134609 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123227 China China Landrace/old cultivar ICARDA 

IG51513 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG52521 Turkey Western Asia Landrace/old cultivar ICARDA 

IG50935 Greece Southern Europe Landrace/old cultivar ICARDA 

IG50357 Turkey Western Asia Landrace/old cultivar ICARDA 

IG123211 China China Landrace/old cultivar ICARDA 

IG123028 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG51891 India India Landrace/old cultivar ICARDA 

IG51562 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123034 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG128913 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123029 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG134770 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG128934 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123004 Maghreb Maghreb Landrace/old cultivar ICARDA 

IG134857 Balkans Central Europe Landrace/old cultivar ICARDA 

IG134782 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG123280 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG123021 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG51991 India India Landrace/old cultivar ICARDA 
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IG51551 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG128887 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG134621 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG52401 Western Asia Western Asia Landrace/old cultivar ICARDA 

IG52081 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG51688 Greece Southern Europe Landrace/old cultivar ICARDA 

IG125378 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG128983 Russia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG51536 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123288 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG51516 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG50248 Turkey Western Asia Landrace/old cultivar ICARDA 

IG52005 India India Landrace/old cultivar ICARDA 

IG124843 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG52017 India India Landrace/old cultivar ICARDA 

IG123102 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG123281 Central Asia Central Asia Landrace/old cultivar ICARDA 

IG50592 China China Landrace/old cultivar ICARDA 

IG52092 Ethiopia Ethiopia Landrace/old cultivar ICARDA 

IG51993 India India Landrace/old cultivar ICARDA 

IG134649 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG49224 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG125469 Georgia Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG52367 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG134870 Balkans Central Europe Landrace/old cultivar ICARDA 

IG116455 Turkey Western Asia Landrace/old cultivar ICARDA 

IG49327 Greece Southern Europe Landrace/old cultivar ICARDA 

IG134750 Ukraine Ukraine, Georgia, Russia Landrace/old cultivar ICARDA 

IG49203 Afghanistan Afghanistan, Nepal Landrace/old cultivar ICARDA 

IG52595 Maghreb Maghreb Landrace/old cultivar ICARDA 

MG 100948 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 101126 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 106069 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 106871 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 110243 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 110416 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 110417 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 110418 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 111850 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 111988 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

MG 115084 Italy Southern Europe Landrace/old cultivar CNR-IBBR, Bari 

ZP0064 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0076 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0126 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0181 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0202 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0213 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 
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ZP0535 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0798 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP0799 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP1261 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP1264 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP1282 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP1294 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

ZP1300 Spain Southern Europe Landrace/old cultivar ITACyL Valladolid 

Witham Wonder United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Emerald Gem United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Englishsabel United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Fillbasket United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

English Wonder United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Kentish Invicta United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Alderman United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Mummy Pea United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Magnum Bonum United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Raina Victoria United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Knights Marrow United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Knights Dwarf White United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

English Maple United Kingdom Western Europe Landrace/old cultivar JIC Norwich 

Gloire de Correze France Western Europe Landrace/old cultivar INRA Dijon 

Serpette D'Auvergne France Western Europe Landrace/old cultivar INRA Dijon 

Picar France Western Europe Landrace/old cultivar INRA Dijon 

Quarante-deux de Sarcelles France Western Europe Landrace/old cultivar INRA Dijon 

Piver France Western Europe Landrace/old cultivar INRA Dijon 

Triomphe de Roissy France Western Europe Landrace/old cultivar INRA Dijon 

Chemin Long France Western Europe Landrace/old cultivar INRA Dijon 

Serpette de Vitry France Western Europe Landrace/old cultivar INRA Dijon 

Gris de Bourgogne France Western Europe Landrace/old cultivar INRA Dijon 

Haute Loire France Western Europe Landrace/old cultivar INRA Dijon 

Champagne France Western Europe Landrace/old cultivar INRA Dijon 

Cote D'Or France Western Europe Landrace/old cultivar INRA Dijon 

Serpette de Paris France Western Europe Landrace/old cultivar INRA Dijon 

CL 19cvs1 Central Europe Central Europe Landrace/old cultivar CRI, Praha 

Hrach Z Pardubic Central Europe Central Europe Landrace/old cultivar CRI, Praha 

Kocovska 108 Central Europe Central Europe Landrace/old cultivar CRI, Praha 

Pulawska Slodka Nr 2 Central Europe Central Europe Landrace/old cultivar IPK Gatersleben 

Kapucin Belokvety Central Europe Central Europe Landrace/old cultivar CRI, Praha 

Landrace Orava Central Europe Central Europe Landrace/old cultivar CRI, Praha 

PIS 278 Central Europe Central Europe Landrace/old cultivar IPK Gatersleben 

PIS 657 Central Europe Central Europe Landrace/old cultivar IPK Gatersleben 

PIS 845 Central Europe Central Europe Landrace/old cultivar IPK Gatersleben 

PIS 2856 Central Europe Central Europe Landrace/old cultivar IPK Gatersleben 

Attika Improved Variety Improved Variety Improved Variety - 

Genial Improved Variety Improved Variety Improved Variety - 

Messire Improved Variety Improved Variety Improved Variety - 
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Santana Improved Variety Improved Variety Improved Variety - 

Spirale Improved Variety Improved Variety Improved Variety - 

Cartuce Improved Variety Improved Variety Improved Variety - 

Dove Improved Variety Improved Variety Improved Variety - 

Enduro Improved Variety Improved Variety Improved Variety - 

Isard Improved Variety Improved Variety Improved Variety - 

Viriato Improved Variety Improved Variety Improved Variety - 

Cigarron Improved Variety Improved Variety Improved Variety - 

 

Figure 3. Quantile-Quantile plots of expected vs. observed association scores of 41,114 SNPs for two pea traits 

and 223 accessions from a worldwide germplasm collection. The red line represents equality between the 

expected and observed quantiles and the grey area the associated 95% confidence interval. 

 

 

Figure 4. Plots of linkage disequilibrium (r2) decay with physical distance for pea chromosomes. r2 was 

estimated on pairwise combinations of 41,114 SNPs within a 100 kb window for 212 landraces from 19 regional 

pools and 11 modern cultivars from a worldwide germplasm collection. 
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Table 8. Significant markers detected by a GWAS based on 41,114 SNPs and performed on 212 landraces from 

19 regional pools and 11 modern cultivars from a worldwide germplasm collection for two pea traits. The SNPs 

are presented from the most to the least significant for each trait with the relative estimated effect. 

SNP Trait Effect 

chr6LG2_72901872 Grain yield 0.32 

chr1LG6_47025851 Grain yield 0.22 

chr7LG7_183744462 Grain yield -0.27 

chr4LG4_186752146 Grain yield -0.34 

chr5LG3_492526140 Protein content 0.95 

 

Table 9. List of genes potentially associated to the significant SNPs detected by a GWAS based on 41,114 SNPs 

and performed on 212 landraces from 19 regional pools and 11 modern cultivars from a worldwide germplasm 

collection for two pea traits. Candidate genes were identified by scanning a region long as the average 

chromosome distance at which LD dropped to 0.05 in both directions from each significant SNP and are reported 

with their annotated function (https://urgi.versailles.inra.fr/). 

SNP Trait Gene Function 

chr6LG2_72901872 Grain yield Psat6g064800 Helix-loop-helix DNA-binding domain 

chr1LG6_47025851 Grain yield Psat1g031400 Protein kinase domain 

chr4LG4_186752146 Grain yield Psat4g098400 

RNA recognition motif. (a.k.a. RRM + RBD + or 

RNP domain) 

chr7LG7_183744462 Grain yield Psat7g111400 No apical meristem (NAM) protein 

chr5LG3_492526140 Protein content Psat5g246720 Rhomboid family 

 

Table 10. Lines selected from each of six RIL populations, which were represented by the first two letters of 

genotype names, for two pea traits by PS and GS. 

Grain yield  Protein yield 

PS GS  PS GS 

AG_L162 AG_L35  AG_L162 AG_L35 

AG_L48 AG_L194  AG_L176 AG_L33 

AG_L176 AG_L81  AI_L126 AI_L117 

AI_L210 AI_L104  AI_L210 AI_L104 

AI_L264 AI_L117  CI_L121 CI_L29 

AI_L126 AI_L212  CI_L208 CI_L88 

CI_L208 CI_L88  DA_L47 DA_L147 

CI_L85 CI_L73  DA_L50 DA_L220 

CI_L88 CI_L29  KA_L122 KA_L105 

DA_L46 DA_L115  KA_L203 KA_L258 

DA_L47 DA_L2  KI_L198 KI_L61 

DA_L50 DA_L147  KI_L61 KI_L166 

KA_L122 KA_L258    

KA_L134 KA_L175    

KA_L203 KA_L105    

KI_L198 KI_L61    

KI_L61 KI_L166    

KI_L140 KI_L110    

 

https://urgi.versailles.inra.fr/
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Table 11. Climatic variables characterizing GS training, PS, and test experiments of top-performing lines for 

grain and protein yield according to PS and GS, including rainfall in the period from January to May, and 

minimum daily temperature (Min. daily T) and number of frost days (No. frost days), namely days with a 

measured minimum temperature below -0.5°C, during the whole cropping cycle.  

Item Sowing date Rainfall (mm) Min. daily T (°C)  No. frost days 

GS training experiments     

Lodi 2013-14 07/11/2013 465 –5.7 35 

Perugia 2013-14 25/11/2013 459 –3.6 9 

Lodi 2014-15 22/10/2014 345 –11.6 34 

PS experiments     

Lodi 2018-19 25/10/2018 308 –12.0 54 

Lodi 2019-20 10/12/2019 192 –10.9 34 

Test experiments     

Lodi 2022 01/02/2022 119 –3.3 13 

Lodi 2023 07/02/2023 209 –4.0 7 

Perugia 2022-23 01/12/2022 320 –4.1 12 

 

Table 12. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and grain yield of three lines selected for 

this trait by either GS or PS from each of six RIL populations (Sel = selection type; Env = environment; RIL = 

RIL population; Rep = replicate; Geno = genotype; “:” indicates an interaction between factors, while “/”nesting 

of the second factor within the first one).  

Grain yield (t/ha) 

Factor Df SS MS F value P 

Sel 1 19.29 19.29 20.59 9.55E-06 

GS_Set 1 41.43 41.43 44.23 2.49E-10 

Env 2 216.53 108.26 115.57 1.42E-34 

Sel:GS_Set 1 0.65 0.65 0.69 0.407 

Sel:Env 2 2.32 1.16 1.24 0.293 

GS_Set:Env 2 19.24 9.62 10.27 5.55E-05 

GS_Set/RIL 4 14.33 3.58 3.82 0.005 

Env/Rep 6 61.11 10.18 10.87 1.56E-10 

Sel:RIL 4 3.04 0.76 0.81 0.518 

Env:RIL 8 23.19 2.90 3.09 0.003 

Sel:GS_Set:Env 2 3.01 1.50 1.60 0.204 

Sel:GS_Set/Geno 24 44.17 1.84 1.96 0.006 

Sel:Env:RIL 8 7.81 0.98 1.04 0.406 

Env:Sel:GS_Set/Geno 48 85.14 1.77 1.89 0.001 

Residuals 210 196.73 0.94   
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Table 13. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and protein yield of two lines selected for 

this trait by either GS or PS from each of six RIL populations (Sel = selection type; Env = environment; RIL = 

RIL population; Rep = replicate; Geno = genotype; “:” indicates an interaction between factors, while “/” the 

nesting of the second factor within the first one).  

Protein yield (t/ha) 

Factor Df SS MS F value P 

Sel 1 0.55 0.55 8.18 0.005 

GS_set 1 1.24 1.24 18.50 3.20E-05 

Env 2 6.72 3.36 50.23 4.07E-17 

Sel:GS_set 1 0.02 0.02 0.35 0.556 

Sel:Env 2 0.05 0.03 0.39 0.677 

GS_set:Env 2 0.79 0.40 5.92 0.003 

GS_set/RIL 4 0.94 0.23 3.51 0.009 

Env/Rep 6 2.36 0.39 5.87 1.78E-05 

Sel:RIL 4 0.44 0.11 1.66 0.164 

Env:RIL 8 0.97 0.12 1.81 0.080 

Sel:GS_set:env 2 0.05 0.02 0.35 0.703 

Sel:GS_set:geno 12 1.23 0.10 1.53 0.120 

Sel:Env:RIL 8 0.57 0.07 1.06 0.397 

Sel:GS_set:Env:geno 24 3.44 0.14 2.14 0.003 

Residuals 138 9.24 0.07   

 

Table 14. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and grain yield of two lines selected for 

protein yield by either GS or PS from each of six RIL populations (Sel = selection type; Env = environment; 

RIL = RIL population; Rep = replicate; Geno = genotype; “:” indicates an interaction between factors, while “/” 

the nesting of the second factor within the first one). 

Grain yield (t/ha) 

Factor Df SS MS F value P 

Sel 1 8.64 8.64 7.87 0.0057 

GS_set 1 16.93 16.93 15.44 0.0001 

Env 2 146.13 73.06 66.62 5.63E-21 

Sel:GS_set 1 0.26 0.26 0.23 0.6300 

Sel:Env 2 0.93 0.47 0.42 0.6550 

GS_set:Env 2 11.31 5.65 5.16 0.0069 

GS_set/RIL 4 12.47 3.12 2.84 0.0265 

Env/Rep 6 38.64 6.44 5.87 1.76E-05 

Sel:RIL 4 6.49 1.62 1.48 0.2118 

Env:RIL 8 15.87 1.98 1.81 0.0803 

Sel:GS_set:env 2 1.62 0.81 0.74 0.4803 

Sel:GS_set:geno 12 20.32 1.69 1.54 0.1155 

Sel:Env:RIL 8 9.43 1.18 1.07 0.3843 

Sel:GS_set:Env:geno 24 58.48 2.44 2.22 0.0022 

Residuals 138 151.35 1.10   
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Table 15. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and protein content of two lines selected 

for protein yield by either GS or PS from each of six RIL populations (Sel = selection type; Env = environment; 

RIL = RIL population; Rep = replicate; Geno = genotype; “:” indicates an interaction between factors, while “/” 

the nesting of the second factor within the first one). 

Protein content (%) 

Factor Df SS MS F value P 

Sel 1 0.88 0.88 2.92 0.090 

GS_set 1 12.47 12.47 41.24 2.02E-09 

Env 2 216.64 108.32 358.35 2.27E-55 

Sel:GS_set 1 2.39 2.39 7.91 0.006 

Sel:Env 2 3.88 1.94 6.42 0.002 

GS_set:Env 2 11.11 5.56 18.38 8.36E-08 

GS_set/RIL 4 26.16 6.54 21.64 7.11E-14 

Env/Rep 6 16.83 2.81 9.28 1.53E-08 

Sel:RIL 4 3.67 0.92 3.03 0.020 

Env:RIL 8 18.82 2.35 7.78 1.37E-08 

Sel:GS_set:env 2 8.14 4.07 13.47 4.53E-06 

Sel:GS_set:geno 12 23.59 1.97 6.50 4.18E-09 

Sel:Env:RIL 8 11.62 1.45 4.81 3.11E-05 

Sel:GS_set:Env:geno 24 27.42 1.14 3.78 3.80E-07 

Residuals 138 41.71 0.30   

 

 

Table 16. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and grain yield of three lines selected for 

this trait by either GS or PS from each of six RIL populations and the relative parental lines (Group = genotype 

group, represented by PS and GS top-performing genotypes whose RIL populations of origin were included or 

not in the GS training set, and the relative parental lines; Env = environment; Geno = genotype; Rep = replicate; 

“:” indicates an interaction between factors, while “/” the nesting of the second factor within the first one).  

Grain yield (t/ha) 

Factor Df SS MS F value P 

Group 4 70.33 17.58 17.09 2.21E-12 

Env 2 208.23 111.13 108.02 2.13E-34 

Group:Env 8 32.61 4.08 3.96 0.0002 

Group/Geno 37 71.45 1.93 1.88 0.0027 

Env/Rep 6 72.61 12.10 11.76 1.37E-11 

Env:Group/Geno 74 126.24 1.71 1.66 0.0022 

Residuals 246 253.09 1.03   
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Table 17. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and onset of flowering data of three lines 

selected for grain yield by either GS or PS from each of six RIL populations and the relative parental lines 

(Group = genotype group, represented by PS and GS top-performing genotypes whose RIL populations of origin 

were included or not in the GS training set, and the relative parental lines; Env = environment; Geno = genotype; 

Rep = replicate; “:” indicates an interaction between factors, while “/” the nesting of the second factor within 

the first one).  

Flowering time (days since March 1) 

Factor Df SS MS F value P 

Group 4 829.80 207.45 152.01 2.88E-65 

Env 2 23619.28 11809.64 8653.70 1.07E-228 

Group:Env 8 55.53 6.94 5.09 7.20E-06 

Group/Geno 37 3242.25 87.63 64.21 6.28E-106 

Env/Rep 6 51.62 8.60 6.30 3.50E-06 

Env:Group/Geno 74 505.64 6.83 5.01 7.37E-22 

Residuals 246 335.71 1.36   

 

Table 18. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and farmer acceptability score data of three 

lines selected for grain yield by either GS or PS from each of six RIL populations and the relative parental lines 

(Group = genotype group, represented by PS and GS top-performing genotypes whose RIL populations of origin 

were included or not in the GS training set and the relative parental lines; Env = environment; Geno = genotype; 

Rep = replicate; “:” indicates an interaction between factors, while “/” the nesting of the second factor within 

the first one).  

Farmer score (1-9) 

Factor Df SS MS F value P 

Group 4 28.07 7.02 10.24 1.10E-07 

Env 2 237.96 118.98 173.60 9.59E-48 

Group:Env 8 6.65 0.83 1.21 2.92E-01 

Group/Geno 37 146.67 3.96 5.78 5.88E-18 

Env/Rep 6 51.94 8.66 12.63 2.05E-12 

Env:Group/Geno 74 111.42 1.51 2.20 3.54E-06 

Residuals 246 168.60 0.69   

 

Table 19. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and protein yield data of two lines selected 

for this trait by either GS or PS from each of six RIL populations and the relative parental lines (Group = 

genotype group, represented by PS and GS top-performing genotypes whose RIL populations of origin were 

included or not in the GS training set and the relative parental lines; Env = environment; Geno = genotype; Rep 

= replicate; “:” indicates an interaction between factors, while “/” the nesting of the second factor within the 

first one).  

Protein yield (t/ha) 

Factor Df SS MS F value P 

Group 4 2.31 0.58 7.90 7.14E-06 

Env 2 6.92 3.46 47.38 3.74E-17 

Group:Env 8 1.32 0.16 2.26 0.026 

Group/Geno 25 3.30 0.13 1.81 0.015 

Env/Rep 6 2.78 0.46 6.35 4.66E-06 

Env:Group/Geno 50 5.63 0.11 1.54 0.022 

Residuals 174 12.70 0.07   
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Table 20. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and grain yield data of two lines selected 

for protein yield by either GS or PS from each of six RIL populations and the relative parental lines (Group = 

genotype group, represented by PS and GS top-performing genotypes whose RIL populations of origin were 

included or not in the GS training set and the relative parental lines; Env = environment; Geno = genotype; Rep 

= replicate; “:” indicates an interaction between factors, while “/” the nesting of the second factor within the 

first one).  

Grain yield (t/ha) 

Factor Df SS MS F value P 

Group 4 33.13 8.28 6.91 3.50E-05 

Env 2 153.36 76.68 63.93 1.53E-21 

Group:Env 8 20.41 2.55 2.13 0.036 

Group/Geno 25 49.19 1.97 1.64 0.035 

Env/Rep 6 49.15 8.19 6.83 1.60E-06 

Env:Group/Geno 50 93.89 1.88 1.57 1.83E-02 

Residuals 174 208.71 1.20   

 

 

Table 21. Degrees of freedom (Df), type III sum of squares (SS), mean squares (MS), and F and p value (P) 

from an ANOVA model based on the factors listed in the 1st column and protein content data of two lines 

selected for protein yield by either GS or PS from each of six RIL populations and the relative parental lines 

(Group = genotype group, represented by PS and GS top-performing genotypes whose RIL populations of origin 

were included or not in the GS training set and the relative parental lines; Env = environment; Geno = genotype; 

Rep = replicate; “:” indicates an interaction between factors, while “/” the nesting of the second factor within 

the first one).  

Protein content (%) 

Factor Df SS MS F value P 

Group 4 18.36 4.59 12.77 3.89E-09 

Env 2 279.89 139.95 389.41 5.67E-65 

Group:Env 8 23.66 2.96 8.23 2.00E-09 

Group/Geno 25 71.55 2.86 7.96 4.03E-18 

Env/Rep 6 15.24 2.54 7.07 9.47E-07 

Env:Group/Geno 50 77.23 1.54 4.30 4.63E-13 

Residuals 174 62.53 0.36   

 


