Università Cattolica del Sacro Cuore Millennium Unicatt DocTA DocTA DocTA  

DocTA - Doctoral Theses Archive >
Tesi di dottorato >
CORSO DI DOTTORATO IN SCIENCE >

Citazione:
Utilizza queste indicazioni per citare o creare un link a questo documento.
Toso, Stefano. "ONE, TWO, MANY NANOCRYSTALS: CHARACTERIZING LEAD HALIDE NANOSTRUCTURES FROM SINGLEPARTICELES TO BULK", Università Cattolica del Sacro Cuore, XXXIV ciclo, a.a. 2021/22, Brescia, [http://hdl.handle.net/10280/145365].

Titolo: ONE, TWO, MANY NANOCRYSTALS: CHARACTERIZING LEAD HALIDE NANOSTRUCTURES FROM SINGLEPARTICELES TO BULK
Autore/i: TOSO, STEFANO
Tutor: GAVIOLI, LUCA
LIBERATO, MANNA
MASARU, KUNO
Coordinatore: GAVIOLI, LUCA
Lingua: ENG
Abstract in italiano della tesi: Negli ultimi decenni la chimica colloidale ha prodotto una crescente varietà di nanostrutture inorganiche con proprietà variegate e finemente regolabili, che possono essere ottimizzate per diverse applicazioni. Tuttavia, questa varietà complica la caratterizzazione strutturale dei nanomateriali, le cui piccole dimensioni e l’intrinseca complessità impongono limitazioni tecniche. Questa Tesi ha come obiettivo quello di affrontare tali sfide proponendo nuovi approcci per caratterizzare e descrivere la struttura dei nanomateriali, approcci che sono qui applicati su nanostrutture di semiconduttori piombo-alogeno. Questi materiali sono molto studiati per le loro interessanti proprietà e per la diversità strutturale che esprimono alla nanoscala, e per questo offrono molti interrogativi scientifici. Sono qui discussi quattro casi studio, ciascuno caratterizzato da una crescente complessità. I) La scoperta di nuovi calcoalogenuri di piombo sotto forma di nanocristalli è sfruttata per sperimentare strategie di soluzione strutturale per nanomateriali inorganici basate sull’utilizzo combinato di tecniche di diffrazione a raggi X ed elettroniche. Sono proposte linee guida per ogni fase del processo di soluzione strutturale, dalla determinazione della stechiometria, all’indicizzazione della cella, fino al raffinamento della struttura. II) Viene discusso come le trasformazioni chimiche tra nanocristalli di alogenuri di piombo-cesio prevedano la formazione di dimeri epitassiali come intermedi di reazione, la cui formazione dipende da specifiche relazioni strutturali. Sulla base di questa scoperta, si dimostra che la formazione di eterostrutture epitassiali tra perovskiti e calcoalogenuri può essere sfruttata efficacemente per indirizzare la sintesi fase-selettiva di nanocristalli colloidali. III) Viene proposto un nuovo metodo per caratterizzare la struttura di solidi formati da nanocristalli auto-assemblati, qui dimostrato su superreticoli di nanocristalli di perovskiti piombo-alogeno. Tale metodo si basa su tecniche di diffrazione sviluppate per film sottili multistrato cresciuti tramite metodi fisici, e sfrutta l'analisi di fenomeni di interferenza collettiva nella regione ad alti angoli del diffrattogramma a raggi X del campione. IV) Campioni microcristallini di perovskiti Ruddlesden-Popper, che sono alogenuri ibridi composti da strati organici e inorganici nanoscopici ordinatamente impilati, sono studiati tramite un'analisi geometrica dei loro parametri di cella per determinare come alogenuri diversi si dispongano disomogeneamente all'interno della struttura cristallina del materiale.
Abstract in inglese: Over the past few decades colloidal chemistry has provided access to a growing variety of inorganic nanostructures with diverse and customizable properties, which can be tailored to many different applications. However, such diversity presents challenges when it comes to characterizing the structure of functional nanomaterials, where the small size and the increased complexity impose technical limitations. This Thesis aims to address these challenges by developing novel approaches to characterize and describe the structure of nanomaterials, which are here demonstrated on lead halide semiconductor nanostructures. These materials are widely investigated for their appealing properties and the structural diversity they express at the nanoscale, and pose therefore a variety of compelling scientific questions. Here are discussed four case studies, each characterized by increasing nanoscale complexity. I) Colloidal nanocrystals of previously unknown lead chalcohalide phases are used to demonstrate strategies for solving the structure of novel inorganic materials by means of combined electron and X-ray diffraction techniques. Guidelines are proposed for each step of the structure solution process, from the stoichiometry determination to the cell indexation and the final structure refinement. II) Epitaxial dimers formed by cesium lead halide compounds are rationalized as reaction intermediates in the chemical transformation of colloidal nanocrystals, and the structural relationships enabling their formation are explored. Following this lead, perovskite/chalcohalide heterostructures are demonstrated as effective templates for the phase-selective synthesis of colloidal nanocrystals. III) Superlattices of lead halide perovskite nanocrystals are used to develop a novel approach for characterizing the nanoscale structure of self-assembled nanocrystal solids. This method is based on diffraction techniques developed for multilayer thin films grown by physical methods, and relies on the analysis of collective interference phenomena in the wide-angle X-ray diffraction pattern of samples. IV) Microcrystalline samples of hybrid layered Ruddlesden-Popper perovskites, composed by nanoscale stacks of organic and inorganic layers, are investigated through a geometric analysis of their unit cell parameters to determine the inhomogeneous distribution of different halides alloyed within their structure.
Data di discussione: 7-apr-2023
URI: http://hdl.handle.net/10280/145365
È visualizzato nelle collezioni:CORSO DI DOTTORATO IN SCIENCE

File in questo documento:

File Descrizione DimensioniFormatoAccessibilità
Toso_PhD_Thesis.pdfPhD Thesis, full text13,43 MBAdobe PDFVisualizza/apri


Accesso e utilizzo dei contenuti di DocTA




 

DocTA è un servizio dell'Università Cattolica del Sacro Cuore realizzato in collaborazione con CINECA
© 2011 UCSC - Tutti i diritti riservati - Powered by DSpace Software - Feedback